
An OpenWhisk Extension
for Topology-Aware Allocation Priority

Policies

Giuseppe De Palma1,2(B) , Saverio Giallorenzo1,2 , Jacopo Mauro3 ,
Matteo Trentin1,2,3 , and Gianluigi Zavattaro1,2

1 Università di Bologna, Bologna, Italy
{giuseppe.depalma2,saverio.giallorenzo2,matteo.trentin2,

gianluigi.zavattaro}@unibo.it
2 OLAS Research Team, INRIA, Sophia Antipolis, France

3 University of Southern Denmark, Odense, Denmark
mauro@imada.sdu.dk

Abstract. The Topology-aware Allocation Priority Policies (tAPP) lan-
guage allows users of serverless platforms to orient the scheduling of their
functions w.r.t. the topological properties of the available computation
nodes. A tAPP-based platform can support multiple scheduling policies,
which one would usually enforce via (brittle) ad-hoc multi-instance plat-
form deployments.

In this paper, we present an extension of the Apache OpenWhisk
serverless platform that supports tAPP-based scripts. We show that our
extension does not negatively impact the performance of generic, non-
topology-bound serverless scenarios, while it increases the performance
of topology-bound ones.

1 Introduction

Function-as-a-Service (FaaS) is a serverless cloud computing model where users
deploy architectures of stateless functions and a platform handles all system
operations [14].

While the FaaS model abstracts away infrastructural details, informing the
scheduler on important infrastructural traits can improve the performance of
serverless architectures. Indeed, function execution performance can depend on
which computing resource, also called worker, the function runs. Effects like
data locality [12]—related to data-access latencies—or session locality [12]—due
to the overhead of establishing connections to other services—can negatively
impact the run time of functions.

This work has been partially supported by the research project FREEDA (CUP:
I53D23003550006) funded by the framework PRIN 2022 (MUR, Italy), RTM&R (CUP:
J33C22001170001) funded by the MUR National Recovery and Resilience Plan (Euro-
pean Union - NextGenerationEU) and the French ANR project SmartCloud ANR-23-
CE25-0012.

c© IFIP International Federation for Information Processing 2024
Published by Springer Nature Switzerland AG 2024
I. Castellani and F. Tiezzi (Eds.): COORDINATION 2024, LNCS 14676, pp. 201–218, 2024.
https://doi.org/10.1007/978-3-031-62697-5_11

https://eapls.org/pages/artifact_badges/
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62697-5_11&domain=pdf
http://orcid.org/0000-0002-3016-0115
http://orcid.org/0000-0002-3658-6395
http://orcid.org/0000-0002-5285-2868
http://orcid.org/0000-0003-3305-2758
http://orcid.org/0000-0003-3313-6409
https://doi.org/10.1007/978-3-031-62697-5_11

202 G. De Palma et al.

The tAPP language [9] (briefly introduced in Sect. 3) allows users to declara-
tively express minimal infrastructural constraints to orient function scheduling.

In previous work [9] we presented a serverless platform that supports tAPP-
specified scheduling policies. In this tool paper, we describe and evaluate the
performance of our platform, which builds upon the widely adopted open-
source serverless platform Apache OpenWhisk, extended to support tAPP—
c.f. Section 4. In particular, the extension regarded the introduction of new
components—e.g., a watcher service, which informs the gateway and the con-
trollers on the current status of the nodes of the platform—and the extension of
existing ones with new functionalities—e.g., to capture topological information
at the level of workers and controllers, to enable live-reloading of tAPP policies,
to let controllers and gateways follow tAPP policies depending on topological
zones, etc.

The main contribution is in Sect. 5, where we validate our implementation
through a set of benchmarks that include both generic and data-locality-bound
serverless architectures, comparing the performance of vanilla OpenWhisk and
our prototype. In particular, we collected a set of representative serverless test
applications, divided into ad-hoc and real-world ones. Ad-hoc tests stress specific
issues of serverless platforms. Real-world tests are functions taken from publicly
available, open-source repositories of serverless applications used in production
and selected from the Wonderless [10] serverless benchmark dataset. We show
that our prototype does not exert a noticeable overhead over generic benchmarks
while it substantially improves the performance of locality-bound ones (paired
with dedicated tAPP scripts). A video that showcases our platform is available
at https://vimeo.com/915098870.

2 Background

We dedicate this section to explaining background knowledge for readers unfa-
miliar with serverless and the OpenWhisk FaaS platform in particular.

Serverless Function Scheduling. The serverless development cycle is divided in
two main parts: a) the writing of a function using a programming language sup-
ported by the platform (e.g., JavaScript, Python, C#) and b) the definition of
an event that should trigger the execution of the function. For example, an event
is a request to store some data, which triggers a process managing the selection,
instantiation, scaling, deployment, fault tolerance, monitoring, and logging of
the functions linked to that event. A Serverless provider schedules functions on
its workers, controlling the scaling of the architecture by adjusting its available
resources and billing its users on a per-execution basis. When instantiating a
function, the provider has to create the appropriate execution environment for
the function. Containers [8] and Virtual Machines (VM) [6] are the main tech-
nologies used to implement isolated execution environments for functions. If the
provider allocates a new container/VM for every request, the initialisation over-
head of the container would negatively affect both the performance of the single

https://vimeo.com/915098870

An OpenWhisk Extension for Topology-Aware Allocation Priority Policies 203

Fig. 1. Architectural view of our OpenWhisk extension. The existing OpenWhisk com-
ponents we modified are in light blue while the new ones are in yellow (Color figure

online).

function and heavily increase the load on the worker. A solution to tackle this
problem is to maintain a “warm” pool of already-allocated containers. This mat-
ter is usually referred to as code locality [12]. Resource allocation also includes
I/O operations that need to be properly considered and can avoid bad allocations
over I/O-bound devices following the principle of session locality [12], i.e., taking
advantage of already established user connections to workers. Another important
aspect to consider to schedule functions is that of data locality, which comes into
play when functions need to intensively access (connection- or payload-wise)
some data storage (e.g., databases or message queues). Intuitively, a function
that needs to access some data storage and that runs on a worker with high-
latency access to that storage (e.g., due to physical distance or thin bandwidth)
is more likely to undergo heavier latencies than if run on a worker “closer” to it.

Apache OpenWhisk. To build our tAPP prototype we concentrate on the widely-
adopted open-source project Apache OpenWhisk. While we focus on the archi-
tecture of OpenWhisk, serverless platforms share common architectural pat-
terns [11], making this contribution useful also as a guideline for alternative
serverless platforms.

The upper part of Fig. 1 above the yellow box reports the architectural view
of OpenWhisk.1 From the left, Nginx is the entry point and load balancer of the
system and distributes the incoming requests to the Controllers. Controllers then
decide on which of the available computation nodes, called Workers (or “invok-
ers” in OpenWhisk’s parlance) to schedule the execution of a given function.
Controllers allocate functions on Workers following a hard-coded policy that

1 For space reason, Fig. 1 shows also the elements we modified and added to support
tAPP—these will be detailed in Sect. 4.

204 G. De Palma et al.

allocates requests to the same function on the same list of Workers. The princi-
ple behind this policy is caching functions on workers to reduce cold starts—the
downtime due to fetching the code and loading the runtime of functions. Finally,
we have Apache Kafka [16] and CouchDB [5]; the first handles the routing and
queueing of requests, while CouchDB manages authorisation and the storage of
functions and their responses.

3 The tAPP Language

We can now introduce the tAPP language, presenting its syntax and semantics.
We report the syntax of tAPP in Fig. 2, which is compliant with YAML [18].

The basic entities of the language are a) scheduling policies, defined by a policy
tag identifier to which users can associate their functions—the policy-function
association is a one-to-many relation—and b) workers, identified by a worker
label—where a label identifies a collection of computation nodes. All identi-
fiers are strings. Given a tag, the corresponding policy includes a list of blocks,
possibly closed with strategy and followup options. A block includes four
parameters: an optional controller selector, a collection of workers, a possible
scheduling strategy, and an invalidate condition. The outer strategy defines
the policy we must follow to select among the blocks of the tag, while the inner
strategy defines how to select workers from the items specified within a chosen
workers block. The controller defines the identifier of a specific controller we
want the gateway to redirect the invocation request to. When used, it is possi-
ble to define a topology tolerance option to further refine how tAPP handles
failures (of controllers). The collection of workers can be either a list of labels
pointing to specific workers (wrk), or a worker set. In lists, the user can specify
the invalidate condition of each single worker, while in sets, the invalidate
condition applies to all the workers included in the set. When users specify
an invalidate condition at block level, this is directly applied to all workers
items (wrk and set) that do not define one. In sets the user can also specify a
strategy followed to choose workers within the set. Finally, the followup value
defines the behaviour to take in case no specified controller or worker in a tag is
available to handle the invocation request.

We discuss the tAPP semantics, and the possible parameters, by comment-
ing on the comprehensive script shown in Fig. 3. The tAPP script starts with
the tag default, which is a special tag used to specify the policy for non-tagged
functions, or to be adopted when a tagged policy has all its members invalidated,
and the followup option is default. In Fig. 3, the default tag describes the
default behaviour of the serverless platform running tAPP. In this case, we use a
workers set to select workers, with no value specified for set which represents
all worker labels. The strategy selected is the platform default. In our proto-
type in Sect. 4 the platform strategy corresponds to a selection algorithm that
mediates load balancing and code locality by associating a function to a numeric
hash and a step size—a number that is co-prime of and smaller than the number
of workers. The invalidate strategy considers a worker non-usable when it is
overloaded, i.e., it does not have enough resources to run the function.

An OpenWhisk Extension for Topology-Aware Allocation Priority Policies 205

Fig. 2. The syntax of tAPP.

Fig. 3. Example of a tAPP script.

Besides the default tag, the couchdb_query tag is used for those func-
tions that access the database. The scheduler considers worker blocks in order
of appearance from top to bottom. As mentioned above, in the first block (asso-
ciated to DB_worker1 and DB_worker2) the scheduler randomly picks one of
the two worker labels and considers the corresponding worker invalid when
it reaches the 50% of capacity. Here, the notion of capacity depends on the
implementation (e.g., our OpenWhisk-based tAPP implementation in Sect. 4
uses information on the CPU usage to determine the load of invokers). When
both worker labels are invalid, the scheduler goes to the next workers block,
with near_DB_worker1 and near_DB_worker2, chosen following a best first
strategy—where the scheduler considers the ordering of the list of workers,
sending invocations to the first until it becomes invalid, to then pass to the
next ones in order. The invalidate strategy of the block (applied to the single
wrk) regards the maximal number of concurrent invocations over the labelled
worker—max concurrent invocations, which is set to 100. If all the worker
labels are invalid, the scheduler applies the followup behaviour, which is to
fail. Users can define subsets of workers by specifying a label associated with
the workers, e.g., local selects only those workers associated to the local label.
The scheduling on worker-sets follows the same logic of block-level worker selec-
tion: it exhausts all workers before deeming the item invalid. Since worker-set
selection/invalidation policies are distinct from block-level ones, we let users
define the strategy and invalidate policies to select the worker in the set. For
example, we can pair the above selection with a strategy and an invalidate
options, e.g.,

− workers: - set: local strategy: random invalidate: capacity used 50%

206 G. De Palma et al.

which tells the scheduler to adopt the random selection strategy and the
capacity used invalidation policy when selecting the workers in the local set.
When worker-sets omit the definition of the selection strategy we consider the
default one. When the invalidation option is omitted, we either apply that of
the enclosing block or, if that is also missing, the default one. Summarising,
given a policy tag, the scheduler follows the strategy (option) to select the
corresponding blocks. A block includes three clauses.

The workers clause either contains a non-empty list of worker (wrk) labels,
each paired with an optional invalidation condition, or a worker-set label (pos-
sibly blank, to select all workers) to range over sets of workers; workers sets
optionally define the strategy and invalidate options to select workers within
the set and declare them invalid.

The strategy clause defines the policy of item selection at the levels of
policy tag, workers block, and workers sets. tAPP supports three strategies:
random, which selects items in a fair random manner; best first, which selects
items following their order of appearance; and platform, which selects items
following the default strategy of the serverless platform—in our prototype, this
corresponds to a co-prime-based selection.

The invalidate clause specifies when a worker (label) cannot host the exe-
cution of a function. When all labels in a block are invalid, we follow the defined
strategy to select the next block until we either find a valid worker or exhaust all
blocks. In the latter case, we apply the followup behaviour. Current invalidate
options are: overload, where the worker lacks enough computational resources to
run the function; capacity used, where the worker reached a threshold percent-
age of CPU load; and max concurrent invocations, where the worker reached
a threshold number of concurrent invocations. All invalidate options include the
non-reachability of a worker.

Within a policy, the followup clause specifies what to do when all the blocks
in a policy tag are invalid; either: fail, which drops the scheduling of the func-
tion; and default, which applies the default policy. Since the default block
is the only possible “backup” tag used when all workers of a custom tag can-
not execute a function (because they are all invalid), the followup value of the
default tag is always set to fail.

To further detail the topological constraints of function execution scheduling,
we have the controller . This is an optional, block-level clause that identifies
which controllers in the current deployment we want to target to execute the
scheduling policy of the current tag. Similarly to workers, we identify controllers
with a label.

Users can label controllers and workers with the topological zone where they
belong. When the designated controller is unavailable, tAPP can use this topo-
logical information to try to satisfy the scheduling request by forwarding it to
some alternative controller. Indeed, a controller can have a topology tolerance
parameter, which specifies what workers an alternative controller can use. Specif-
ically, all is the default and most permissive option and does not restrict the
topology zone of workers; same constrains the function to run on workers in

An OpenWhisk Extension for Topology-Aware Allocation Priority Policies 207

the same zone of the faulty controller (e.g., for data locality); none forbids the
forward to other controllers.

- couchdb_query:
- controller: DBZoneCtl

workers:
- set: local

strategy: random
topology_tolerance: same

followup: default

As an example, we could use the
topology zones and rewrite the
previous tAPP script from Fig. 3
for the couchdb_query tag as
shown on the left. In this way, we
guarantee that the function will
be executed always on the workers
in the same zone of the database.
Lastly, tAPP lets users express a
selection strategy for policy blocks;

as represented by the optional strategy fragment of the tag rule in tAPP’s syntax.
By default, when we omit to define a strategy policy for blocks, tAPP allocates
functions following the blocks from top to bottom—i.e., best first is the default
policy. Here, for example, setting the strategy to random captures the simple
load-balancing strategy of using randomness to uniformly distributing requests
among the available controllers.

4 Supporting tAPP in OpenWhisk

We now discuss how we modified and extended OpenWhisk to support tAPP
policies. In the following, we pair OpenWhisk with the popular and widely sup-
ported container orchestrator Kubernetes to orchestrate the deployment of the
components.

Figure 1 depicts the architecture of our OpenWhisk extension, where we reuse
the Workers and the Kafka components, we modify Nginx and the Controllers
(light blue in the picture), and we introduce two new services: the Watcher
and the NFS Server (in the highlighted area of Fig. 1). The modifications mainly
regard letting Nginx and Controllers retrieve and interpret both tAPP scripts
and data on the status of nodes, to forward requests to the selected controllers
and workers. Concerning the new services, the Watcher monitors the topology of
the Kubernetes cluster and collects its current status into the NFS Server, which
provides access to tAPP scripts and the collected data to the other components.
Below, we present the two new services, the changes to the existing OpenWhisk
components, and how the proposed system supports live-reloading of tAPP con-
figurations. We conclude with a description of the deployment procedure of the
resulting prototype.

OpenWhisk Controller. To let the original OpenWhisk controller execute tAPP
scripts, we extended the existing codebase of OpenWhisk. The component is
written in Scala and it consists of a base LoadBalancer class which the vanilla
OpenWhisk load balancer extends. To let OpenWhisk support tAPP schedul-
ing policies, we introduced a new class that also extends the base one, called
ConfigurableLoadBalancer. This class implements a parser and an engine that
interprets tAPP scripts.

208 G. De Palma et al.

Watcher and NFS Server Services. We introduce the Watcher service to
map tAPP-level information, such as zones and controllers/workers labels, to
deployment-specific information, e.g., the name Kubernetes uses to identify com-
putation nodes.

To realise the Watcher, we rely on the APIs provided by Kubernetes, which
we use to deploy our OpenWhisk variant. In Kubernetes, applications are col-
lections of services deployed as “pods”, i.e., a group of one or more containers
that must be placed on the same node and share network and storage resources.
Kubernetes automates the deployment, management, and scaling of pods on a
distributed cluster and one can use its API to monitor and manipulate the state
of the cluster.

Our Watcher polls the Kubernetes API, asking for pod names and the respec-
tive labels and zones of the nodes (cf. Fig. 1), and stores the mapping into the
NFS Server.

As shown in Fig. 1, Nginx uses the output of the Watcher to forward requests
to controllers, allowing tAPP scripts to target controllers through their label
rather than their specific pod identifier. Besides abstracting away deployment
details, this feature supports dynamic changes to the deployment topology, e.g.,
when Kubernetes decides to move a controller pod at runtime on another node.

Moreover, the NFS Server works as the main injection point for tAPP scripts,
both right after deployment and during the execution of the platform. When a
new script is available on the NFS Server, the Controllers and Nginx obtain a
copy, avoiding possible latencies due to fetching at function invocation. Future
refinements can include the implementation of a dedicated API for the injection
of scripts, removing the need for the NFS Server.

Nginx, OpenWhisk’s Entry Point. Nginx forwards requests to all available con-
trollers, following a hard-coded round-robin policy. To support tAPP, we change
how Nginx processes incoming requests of function execution. We used njs (a
subset of the JavaScript language that Nginx provides to extend its functionali-
ties) for this integration.

Namely, we wrote an njs plug-in to analyse all requests passing through
Nginx. The plug-in extracts any tag from the request parameters and com-
pares it against the tAPP scripts. If the extracted tag matches a policy-tag, we
interpret the associated policy, resolve its constraints, and find the related node
label. The last step is translating the label into a pod name, done using the label-
pod mapping produced by the Watcher service. Since Nginx manages all inbound
traffic, we strived to keep the footprint of the plug-in small, e.g., we only inter-
pret tAPP scripts and load the mappings when requests carry some tags and we
use caching to limit retrieval downtimes from the NFS Server. From the user’s
point of view, the only visible change regards the tagging of requests. When
tags are absent, Nginx follows the default policy or, when no tAPP script is
provided, it falls back to the built-in round-robin.

Topology-Based Worker Distribution. We associate labels with pods via the
topology labels provided by Kubernetes. These labels are names assigned to

An OpenWhisk Extension for Topology-Aware Allocation Priority Policies 209

nodes that can describe the structure of the cluster by annotating their zones
and attributes. In Fig. 1, we draw labels as boxes on the side of the controllers
and workers.

Since OpenWhisk does not have a notion of topology, all controllers can
schedule all functions on any available worker. Our extension unlocks a new
design space that administrators can use to fine-tune how controllers access
workers, based on their topology. At deployment, DevOps define the access policy
used by all controllers. Our investigation led us to identify four topological-
deployment access policies.

The default policy is the original one of OpenWhisk, where controllers have
access to a fraction of all workers’ resources. This policy has two drawbacks.
First, it tends to overload workers, since controllers race to access workers in an
uncoordinated manner. Second, it gives way to a form of resource grabbing, since
controllers can access workers outside their zone, effectively taking resources
away from “local” controllers.

The min memory policy is a refinement of the default policy and it miti-
gates overload and resource-grabbing by assigning only a minimal fraction of
the worker’ resources to “foreign” controllers. For example, in OpenWhisk the
resources regard the available memory for one invocation (in OpenWhisk, 256
MB). When workers have no controller in their topological zone or no topological
zone at all, we follow the default policy. The min memory policy has a drawback
too: it can lead to scenarios where smaller zones quickly become saturated and
unable to handle requests.

The isolated policy lets controllers access only co-located workers. This
reduces overloading and resource grabbing but accentuates small-zone saturation
effects.

The shared policy accesses primarily local workers and lets them access for-
eign ones after having exhausted the locals. This policy mediates between par-
titioning resources and efficient usage, but it can suffer from resource grabbing
by remote controllers.

Controllers follow the policies declared in the available tAPP scripts and
access topological information and tAPP scripts in the same way as described
for Nginx. If no tAPP script is available, controllers resort to their original,
hard-coded logic but prioritise scheduling functions on co-located workers.

Since the cluster’s topology, its attributes, and the related tAPP scripts can
change (e.g., to include a new node), we designed our prototype to dynamically
support such changes, avoiding stop-and-restart downtimes. We implement this
feature by storing a single global copy of the policies in the NFS Server, while
we keep multiple, local copies in Nginx and each controller instance. When we
update the reference copy, we notify Nginx and the controllers and let them
handle cache invalidation and retrieval.

Deploying tAPP -based OpenWhisk The standard way to deploy OpenWhisk is
by using the Docker images available for each component of the architecture—
this lets developers choose the configuration that suits their deployment scenario,
spanning single-machine deployments, where all the components run on the same

210 G. De Palma et al.

node, and clustered (e.g., via Kubernetes) deployments, e.g., assigning a different
node to each component. Since we modified the Controller component of the
architecture, we built a new, dedicated Docker image so that it is generally
available to be used in place of the vanilla controller.

5 Evaluation

We evaluate our prototype by comparing the performance of vanilla Open-
Whisk and our tAPP-based variant under different benchmarks. We show that
the overhead of running tAPP scheduling policies is negligible and that, in
locality-bound scenarios, custom scheduling policies reduce function run times.

To obtain our empirical results, we devise two kinds of benchmarks. The first
kind of benchmarks measures the overhead of the advanced features introduced
by our prototype against the performance of vanilla OpenWhisk. The purpose of
these “overhead” tests is to empirically quantify the impact of performance of the
advanced, dynamic features introduced by tAPP in our prototype w.r.t. vanilla
OpenWhisk. Since we want to focus on the performance of the platform, rather
than the execution of the functions, we avoid tests that can introduce biases
generated by data locality effects, i.e., those coming from the vanilla Open-
Whisk accidentally choosing workers with a high-latency access to some data
sources. The second kind of benchmarks focuses on “data-locality” effects and
benchmarks the performance gain of topology-aware policies. The idea of these
tests is to evaluate the performance gains that tAPP-based policies can provide,
compared against the possible suboptimal scheduling of the vanilla version.

In what follows, we mark (O) overhead tests and (D) data-locality ones.
To perform a comprehensive comparison, we collected a set of representative

serverless test applications, divided into ad-hoc and real-world ones. Ad-hoc
tests stress specific issues of serverless platforms. Real-world tests are functions
taken from publicly available, open-source repositories of serverless applications
used in production and selected from the Wonderless [10] serverless benchmark
dataset.

Ad-hoc Tests. Each ad-hoc test focuses on specific a trait: hellojs (O) imple-
ments a “Hello World” application and it provides an indication of the per-
formance functions with a simple behaviour which parses and evaluates some
parameters and returns a string; sleep (O) waits 3 s and benchmarks the han-
dling of multiple functions running for several seconds and the management
of their queueing process; matrixMult (O) multiplies two 100× 100 matrices
and returns the result to the caller, to measure the performance of handling func-
tions performing some meaningful computation; cold-start (O) is a parameter-
less variant of hellojs that loads a heavy set of dependencies (42.8 MB) required
and instantiated when the function starts; mongoDB (D) stresses the effect of
data locality by executing a query requiring a document from a remote MongoDB
database. The requested document is lightweight, corresponding to a JSON doc-
ument of 106 bytes, with little impact on computation. This test focuses on the

An OpenWhisk Extension for Topology-Aware Allocation Priority Policies 211

performance of accessing delocalized data; data-locality (D) encompasses both
a memory- and bandwidth-heavy data-query function. It requests a large doc-
ument (124.38 MB) from a MongoDB database and extracts a property from
the returned JSON. This test witnesses both the impact of data locality w.r.t
latency and bandwidth occupation.

All tests use Node.js 10 except those using MongoDB (v5), which use Node.js
12.

Real-World Tests. We draw our real-world tests from Wonderless [10]; a peer-
reviewed dataset with almost 2000 projects automatically scraped from GitHub.
The projects target serverless platforms like AWS, Azure, Cloudflare, Google,
and OpenWhisk.

In a way, Wonderless reflects the current situation of serverless industrial
adoption. The distribution of its projects is heavily skewed towards AWS-specific
applications. Indeed, out of the 1877 repositories in the dataset, 97.8% are AWS-
specific. Since we need the projects to work on OpenWhisk, we exclude most of
them, leaving us with 66 projects which, unfortunately, sometimes carry limited
information on their purpose and usage, they implement “Hello Word” applica-
tions, and have deployment problems. Thus, to select our real-world tests, we
followed these exclusion criteria: a) the project must have a README.md file writ-
ten in English with at least a simple description of the project’s purpose. This
filters out repositories that contain no explanation on their inner workings or a
description of the project; b)the project works as-is, i.e., no compilation or exe-
cution errors; are thrown when deployed and the only modifications allowed for
its execution regard configuration and environment files (i.e., API keys, creden-
tials, and certificates). The reason for this rule concerns both the validity and
reliability of the dataset, since fixing execution bugs could introduce biases from
the researchers and skew the representativeness of the sample; c) the project
must not use paid services (e.g., storage on AWS S3 or deployment dependent on
Google Cloud Functions), which guarantees that the tests are generally available
and easily reproducible; d) the project must represent a realistic use case. These
exclude “Hello World” examples and boilerplate setups. The project must imple-
ment at least a function accepting input and producing an output as a result of
either an internal transformation (such as code formatting or the calculation of
a complex mathematical expression) or the interaction with an external service.
This rule filters out all projects which do not represent concrete use cases.

The filtering led to the selection of three real-world tests:2 slackpost (O),
from bespinian/k8s-faas-comparison, is a project written in Javascript, run on
Node.js 12, and available for different platforms. It consists of a function that
sends a message through the Slack API. While not complex, it is a common exam-
ple of a serverless application that acts as the endpoint for a Slack Bot; pycatj
(O), from hellt/pycatj-web, is a project written in Python, run on Python 3.7,
and it requires pre-packaged code to work. It consists of a formatter that takes

2 For reproducibility, we provide the list of the rejection criteria applied to all 63
non-AWS discarded projects at [1].

212 G. De Palma et al.

an incoming JSON string and returns a plain-text one, where key-value pairings
are translated in Python-compatible dictionary assignments. As a sporadically
invoked web-based function, it represents an ordinary use case for serverless;
terrain (D), from terraindata/terrain, is a project written in Javascript and
run on Node.js 12. The repository contains a serverless application that stress-
tests a deployed backend. The backend is a traditional, non-serverless application
deployed on a separate machine from the test cluster, which works as the target
for this stress test. This is a common example of a serverless use case: monitoring
and benchmarking external systems.

5.1 Test Environment

We used Apache JMeter to test and record the latency of our benchmarks,
i.e., the time between the delivery of the request and the reception of the first
response.

Configuration. The basic configuration for JMeter to run the ad-hoc tests uses 4
parallel threads (users), with a 10-s ramp-up time, i.e., the time needed to reach
the total number of threads, and 200 requests per user. For some ad-hoc tests, we
considered more appropriate a slight modification of the basic configuration. For
the sleep test we use 25 requests per user since we deem it not necessary to have
a larger sample size as the function has a predictable behaviour. The cold-start
is meant to deliberately disregards the best practices of serverless development
to showcase how the platform handles the cold start of “heavy” functions. For
this reason, we throttle the invocations of these functions one every 11 min to
let caches timeout—OpenWhisk’s default cache timeout is 10 min. – and we use
only 1 user performing 3 requests; this is enough to witness the effect on cache
invalidation and initialisation times. Finally, due to the fact that the data-
locality test is resource-heavy, we use only 50 repetitions for each of the 4
users; this is enough to witness data-locality effects.

We have a different configuration for each Wonderless test: slackpost has
1 user, 100 repetitions, and a 1-s pause, to account for Slack API’s rate limits;
pycatj has 4 parallel users, 200 repetitions, and a 10-s ramp-up time, akin to
the default for ad-hoc tests; terrain has 1 user, 5 repetitions, and a 20-s pause,
since the task is already a stress test and the amount of parallel computation on
the node is high.

For each test with the exclusion of the previusly mentioned cold-start, we
execute 10 runs, removing and re-deploying the whole platform every 2 repeti-
tions to avoid benchmarking specific configurations, e.g., bad, random configu-
rations where vanilla OpenWhisk elects as primary a high-latency worker.

Cluster. For both reproducibility and reliability, we automatised all the levels
of the deployment steps: the provisioning of the virtual machines (VMs) and
both the deployment of Kubernetes and of (our extended version of) Open-
Whisk on Google Cloud Platform via a Terraform and Ansible scripts. Once
the Kubernetes cluster is up and running, we use the Helm package from

An OpenWhisk Extension for Topology-Aware Allocation Priority Policies 213

Fig. 4. Left: overhead tests (no data locality effects), average latency (bars) and stan-
dard deviation (barred lines) in seconds. Right: data-locality tests, average latency
(bars) and standard deviation (barred lines) in seconds.

openwhisk-deploy-kube [2], that we forked to implement a tAPP-specific pack-
age for the installation with our custom controller image. This automatically
deploys every component on a Kubernetes cluster and allows the user to param-
eterize the configuration of the deployment; specifically, we configure the deploy-
ment to select our tAPP-based controller image. The vanilla version os Open-
Whisk is instead the one from OpenWhisk’s official repository at https://github.
com/apache/openwhisk-deploy-kube, commit 18960f.

We deployed both the vanilla and extended versions of OpenWhisk on a
cluster of six virtual machines distributed across two regions (corresponding to
two zone labels used in the deployment). We used a Kubernetes master node
(not used as a computation node by OpenWhisk), along with one controller
and one worker in the first region: France Central. The other controller and
its two associated workers were in the second region: East US. All workers are
Standard DS1 v2 Azure virtual machines, while the Kubernetes master node and
both controllers are Standard B2s Azure virtual machines. For the test, we also
deployed two machines in the AWS region (us-east): a t2.micro EC2 instance for
MongoDB and a t2.medium EC2 instance for the terrain backend. All machines
(both on Azure and AWS) ran Ubuntu 20.04. To identify the best target for
the data-locality tests, we measured the latency between the five (excluding
the Kubernetes master node) cluster nodes and the two EC2 instances, which
averages at 2 ms for machines located in East US, and 80ms for machines located
in France Central. This identified the East US nodes as the optimal targets. The
code used to deploy and run the tests is available at [2].

5.2 Results

We now present the results of running our tests on vanilla OpenWhisk and our
prototype. In particular, we test our extension under all four topology-based

https://github.com/apache/openwhisk-deploy-kube
https://github.com/apache/openwhisk-deploy-kube

214 G. De Palma et al.

worker distribution policies: default, isolated, min memory, and shared (cf.
Sect. 4).

An initial comment regards terrain. While we could deploy this project, at
runtime we observed up to 60% of timeouts and request errors (in comparison,
the other tests report 0% failure rate). This test is a real-world one and, according
to our testing methodology (cf. Sect. 5), we use its code as-is. Since this error
rate is too high for valid tests, we discard it in this section (its raw data is in [1],
for completeness).

We first present the results of the overhead tests and then the data-locality
ones.

Overhead Tests. To better compare the overhead of our extension w.r.t. the
vanilla OpenWhisk one, we run the hellojs, sleep, matrixMult, cold-start,
slackpost, and pycatj without a tAPP script. As a consequence, we also do not
tag test functions, since there would be no policies to run against. As specified
in Section 4, this makes our platform resort to the original scheduling logic of
OpenWhisk, although it prioritises (and undergoes the overhead of) scheduling
functions on co-located workers. These tests are therefore useful to evaluate the
impact on performance of our four zone-based worker distribution policies, in
comparison with the topology-agnostic policy hard-coded in OpenWhisk (cf.
Section 2).

We report on the left of Fig. 4, in seconds, the average (bars) and the variance
(barred lines) of the latency of the performed tests. For reference, we report in [1]
all the experimental data. Since the standard deviation in the results is generally
small, we concentrate on commenting on the results of the averages.

In the results, Vanilla OpenWhisk has better performance w.r.t. all our vari-
ants in the sleep and the cold-start cases, where all tested policies have sim-
ilar performance. The latency in these tests does not depend on the adopted
scheduling policies, but on other factors: the three-second sleep in sleep, the
long load times in cold-start. While we expected a sensible overhead in both
cases, we found encouraging results: the overhead of topology-based worker selec-
tion strategies is negligible—particularly in the sleep, where the shared policy
almost matches the performance of vanilla OpenWhisk.

In the other four tests (hellojs, matrixMult, slackpost, and pycatj), the
default worker distribution policy outperforms both vanilla OpenWhisk and the
other policies. This policy combines the standard way in which OpenWhisk allo-
cates resources (where each worker reserves the same amount of resources for
each controller) and our topology-based scheduling approach (where each con-
troller selects workers in the same zone and uses remote workers only when the
local ones are overloaded). These results confirm that the latency reduction from
topology-based scheduling compensates (and even overcomes) its overhead—
in some cases, the performance gain is significant, e.g., matrixMult shows a
latency drop of 44%.

We deem the good performance of our extension in these tests (spanning
simple and more meaningful computation and real-world applications) a positive
result. Indeed, we expected topology-based scheduling to mainly allay data local-

An OpenWhisk Extension for Topology-Aware Allocation Priority Policies 215

ity issues, but we have experimentally observed significant performance improve-
ments also in tests free from this effect.

We also note that the min memory policy tends to perform the worst. To
explain this fact, we draw attention to also the results of the isolated policy:
both strategies can lead to saturated zones when faced with many requests, but
they act differently with overloaded local workers. The isolated policy ignores
remote workers and returns control to Nginx, which passes the invocation to
a different controller. The min memory policy instead tries to access remote
workers with minimal resource availability, which can lead to higher latencies
due to queuing and remote communications. The results of default and shared
reinforce this conclusion: they increase resource sharing within the cluster and
mitigate possible asymmetries (here, we had two workers in one zone and one in
the other).

Data-Locality Tests. For the data-locality tests, we first run them without tag-
ging functions and provide no tAPP script, thus comparing vanilla OpenWhisk
and our extension on a common ground where the main difference between the
two stands on the four distribution policies applied at deployment level and
their overhead. Then, we ran the same tests (on our extension), but we tagged
the functions and provided a tAPP script that favours executing functions on
workers close to the data source.

We report on the right of Fig. 4, in seconds, the average (bars) and the
variance (barred lines) of the latency of the data-locality tests mongoDB and
data-locality—the full experimental data is in [1]. For brevity, we show, with
the right-most bar on the right of Fig. 4, the results of the best-performing
distribution policy (shared, see below) paired with the mentioned tAPP script.

As expected, in all tests our extension outperforms vanilla OpenWhisk, con-
firming previous evidence on data locality [12] and presenting useful applications
of topology-aware scheduling policies for topology-dependent workflows.

In mongoDB, our extension outperforms vanilla OpenWhisk under all
strategies, although it undergoes a higher variance. The small variance of vanilla
OpenWhisk in this test is probably thanks to the light test query, which miti-
gates instances where vanilla OpenWhisk uses high-latency workers.

The results from data-locality confirm the observation above. There, the
variance for vanilla OpenWhisk is larger—quantitatively, the variances of mon-
goDB for our extension stay below 0.5 s, while the variance of vanilla Open-
Whisk in data-locality is 9-fold higher: 4.5 s. Here, the heavier test query
strongly impacts the performance of those “bad” deployments that prioritise
high-latency workers.

More precisely, the best performing strategies are shared for mongoDB and
min memory for data-locality. In the first case, since the query did not weigh
too much on latency (e.g., bandwidth-wise), mixing local and remote work-
ers favoured the shared policy, which, after exhausting its local resources, can
freely access remote ones. In the second case, the min memory policy performed
slightly better than the shared one. We attribute this effect to constraining the

216 G. De Palma et al.

selection of workers mainly to the local zone and resorting in minimal part to
remote, higher-latency workers.

Given the results above, we performed the tAPP-based tests (right-most col-
umn on the right of Fig. 4) with the shared policy3.

Compared to the tag-less shared policy, the tagged case in mongoDB is a
bit slower, but more stable (small variance). In data-locality it almost halves
the run time of the tag-less case.

These tests witness the trade-off of using tAPP-based scheduling to exploit
data locality and the overhead of parsing the tAPP script: due to its many
lightweight requests, mongoDB represents the worst case for the overhead,
but the test still outperforms vanilla OpenWhisk (showing that the overhead
is compensated by the advantages of our worker selection strategies); in data-
locality, the heaviness of the query and the payload favours spending a small
fraction of time to route functions to the workers with lower latency to the data
source.

6 Related Work and Conclusion

Related Work. Many works tackle minimising serverless function invocation
latency, often trying to optimise function scheduling [17,20].

One work close to ours is by Sampé et al. [19], where the authors propose
to favour data locality by allocating functions to storage workers. The main
difference with our proposal is that we designed tAPP to specify scheduling
constraints on topologies, where data locality may emerge; contrarily Sampé et
al. frame the problem as topologies induced by data-locality issues.

Broadening our scope, we find proposals like Banaei et al. [7], who present a
scheduling policy that governs the order of invocation processing, depending on
the availability of the resources they use; Abad et al. [3] who propose a package-
aware technique that favours re-using the same workers for the same functions to
cache dependencies; Suresh and Gandhi [23], who introduced a scheduling policy
oriented by resource usage of co-located functions on workers; Steint [22] and
Akkus et al. [4] who respectively present a scheduler based on game-theoretic
allocation and on the interaction of sandboxing of functions and hierarchical
messaging. Other works rely on the state and relations among functions to deter-
mine scheduling policies. Examples include scheduling functions within a single
workflow as threads within a single process of a container instance, reducing over-
head by sharing state among them [15]; using state by supporting both global
and local state access, aiming at performance improvements for data-intensive
applications [21]; associating each function invocation with a shared log among
serverless functions [13].

Drawing a comparison between the above works and ours, by using tAPP, the
user expresses explicitly topologies considered at scheduling time, while topolo-
gies emerge as implicit, runtime configurations in the other proposals.
3 In data-locality, min memory has a slightly lower average than shared, but the

latter has both lower variance and maximal latency.

An OpenWhisk Extension for Topology-Aware Allocation Priority Policies 217

Conclusion. We presented a tAPP-based serverless platform implementation for
the specification and execution of topology-aware serverless scheduling policies.
We used the presented tool to show that topology-aware scheduling can improve
the performance of serverless architectures. Indeed, our benchmarks have shown
that in almost all the considered test cases, the tAPP-based solution outper-
forms the unmodified platform, making it suitable both for generic applications,
and especially for locality-sensitive functions.

Regarding future work, we consider extending the support for tAPP to other
serverless platforms, like OpenLambda, OpenFAAS, and Fission. We also plan to
expand our range of tests: both to include other aspects of locality (e.g., ses-
sions) and specific components of the platform (e.g., message queues, controllers),
and new benchmarks for alternative platforms, to elicit the peculiarities of each
implementation. Moreover, we plan to consider cloud-edge use cases, where both
local and remote machines execute functions and may benefit from topology-
aware optimisations that exploit data locality. Regarding tests, we remark on
the general need for more platform-agnostic and realistic suites, to obtain fairer
and thorough comparisons.

References

1. tAPP-based openwhisk extension (2022). https://github.com/mattrent/openwhisk
2. Repository of rejected projects from wonderless (2022). https://github.com/

mattrent/openwhisk-deploy-kube
3. Abad, C.L., Boza, E.F., Eyk, E.V.: Package-aware scheduling of faas functions. In:

Proceedings of ACM/SPEC ICPE, pp. 101–106. ACM (2018). https://doi.org/10.
1145/3185768.3186294

4. Akkus, I.E., et al.: SAND: towards high-performance serverless computing. In:
Proceedings of USENIX/ATC, pp. 923–935 (2018)

5. Anderson, J.C., Lehnardt, J., Slater, N.: CouchDB: the definitive guide: time to
relax. ” O’Reilly Media, Inc.” (2010)

6. Armbrust, M., et al.: Above the clouds: a Berkeley view of cloud computing. Uni-
versity of California, Berkeley, Rep. UCB/EECS 28(13), 2009 (2009)

7. Banaei, A., Sharifi, M.: Etas: predictive scheduling of functions on worker nodes
of apache openwhisk platform. J. Supercomput. (2021). https://doi.org/10.1007/
s11227-021-04057-z

8. Bernstein, D.: Containers and cloud: from lxc to docker to kubernetes. IEEE Cloud
Comput. 1(3), 81–84 (2014)

9. De Palma, G., Giallorenzo, S., Mauro, J., Trentin, M., Zavattaro, G.: A declara-
tive approach to topology-aware serverless function-execution scheduling. In: 2022
IEEE International Conference on Web Services, ICWS 2022, Barcelona, Spain,
July 11–15, 2022. IEEE (2022)

10. Eskandani, N., Salvaneschi, G.: The wonderless dataset for serverless computing.
In: Proceedings of IEEE/ACM MSR, pp. 565–569 (2021). https://doi.org/10.1109/
MSR52588.2021.00075

11. Hassan, H.B., Barakat, S.A., Sarhan, Q.I.: Survey on serverless computing. J. Cloud
Comput. 10(1), 1–29 (2021)

12. Hendrickson, S., Sturdevant, S., Harter, T., Venkataramani, V., Arpaci-Dusseau,
A.C., Arpaci-Dusseau, R.H.: Serverless computation with openlambda. In: Pro-
ceedings of USENIX HotCloud (2016)

https://github.com/mattrent/openwhisk
https://github.com/mattrent/openwhisk-deploy-kube
https://github.com/mattrent/openwhisk-deploy-kube
https://doi.org/10.1145/3185768.3186294
https://doi.org/10.1145/3185768.3186294
https://doi.org/10.1007/s11227-021-04057-z
https://doi.org/10.1007/s11227-021-04057-z
https://doi.org/10.1109/MSR52588.2021.00075
https://doi.org/10.1109/MSR52588.2021.00075

218 G. De Palma et al.

13. Jia, Z., Witchel, E.: Boki: stateful serverless computing with shared logs. In: Pro-
ceedings of ACM SIGOPS SOSP, pp. 691–707. ACM, New York, NY, USA (2021).
https://doi.org/10.1145/3477132.3483541

14. Jonas, E., et al.: Cloud programming simplified: a Berkeley view on serverless
computing. Technical report UCB/EECS-2019-3, EECS Department, University
of California, Berkeley (2019)

15. Kotni, S., Nayak, A., Ganapathy, V., Basu, A.: Faastlane: accelerating function-
as-a-service workflows. In: Proceedings of USENIX ATC, pp. 805–820. USENIX
Association (2021)

16. Kreps, J., Narkhede, N., Rao, J., et al.: Kafka: a distributed messaging system for
log processing. In: Proceedings of NetDB, vol. 11, pp. 1–7 (2011)

17. Kuntsevich, A., Nasirifard, P., Jacobsen, H.A.: A distributed analysis and bench-
marking framework for apache openwhisk serverless platform. In: Proceedings of
Middleware (Posters), pp. 3–4 (2018)

18. Oren Ben-Kiki, Clark Evans, I.d.N.: Yaml ain’t markup language (yamlTM) version
1.2 (2021). https://yaml.org/spec/1.2.2/

19. Sampé, J., Sánchez-Artigas, M., Garćıa-López, P., Paŕıs, G.: Data-driven serverless
functions for object storage. In: Proceedings of Middleware, pp. 121–133. ACM
(2017). https://doi.org/10.1145/3135974.3135980

20. Shahrad, M., Balkind, J., Wentzlaff, D.: Architectural implications of function-as-
a-service computing. In: Proceedings of MICRO, pp. 1063–1075 (2019)

21. Shillaker, S., Pietzuch, P.: Faasm: Lightweight isolation for efficient stateful server-
less computing. In: Proceedings of USENIX ATC, pp. 419–433. USENIX Associa-
tion (2020)

22. Stein, M.: The serverless scheduling problem and noah. arXiv preprint
arXiv:1809.06100 (2018)

23. Suresh, A., Gandhi, A.: Fnsched: an efficient scheduler for serverless functions. In:
Proceedings of WOSC@Middleware, pp. 19–24. ACM (2019). https://doi.org/10.
1145/3366623.3368136

https://doi.org/10.1145/3477132.3483541
https://yaml.org/spec/1.2.2/
https://doi.org/10.1145/3135974.3135980
http://arxiv.org/abs/1809.06100
https://doi.org/10.1145/3366623.3368136
https://doi.org/10.1145/3366623.3368136

	An OpenWhisk Extension for Topology-Aware Allocation Priority Policies
	1 Introduction
	2 Background
	3 The tAPP Language
	4 Supporting tAPP in OpenWhisk
	5 Evaluation
	5.1 Test Environment
	5.2 Results

	6 Related Work and Conclusion
	References

