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Abstract. Software-defined networking and network function virtual-
ization have brought unparalleled flexibility in defining and managing
network architectures. With the widespread diffusion of cloud platforms,
more resources are available to execute virtual network functions con-
currently, but the current approach to defining networks in the cloud
development is held back by the lack of tools to manage the composition
of more complex flows than simple sequential invocations.

In this paper, we advocate for the usage of choreographic program-
ming for defining the multiparty workflows of a network. When applied
to the composition of virtual network functions, this approach yields
multiple advantages: a single program expresses the behavior of all com-
ponents, in a way that is easier to understand and check; a compiler
can produce the executable code for each component, guaranteeing cor-
rectness properties of their interactions such as deadlock freedom; and
the bottleneck of a central orchestrator is removed. We describe the pro-
posed approach and show its feasibility via a case study where different
functions cooperatively solve a security monitoring task.

Keywords: Software-defined Networks · Virtual Network Functions ·
Choreographic Programming · Network Security · Denial-of-Service

1 Introduction

Software-Defined Networks (SDNs) [1] and Network Function Virtualization
(NFV) [2] have revolutionised network architectures: SDNs enable the straight-
forward, dynamic management and configuration of network resources through
a programmable software layer, while NFV replaces dedicated hardware appli-
ances with software (Virtual Network Functions – VNFs) that runs on commod-
ity hardware, promoting flexibility and scalability. Traditionally, VNFs are pro-
grammed in a way that recalls orchestrated sequential compositions from service-
oriented computing. We attribute the choice of this programming approach to
resource constraints, which make running multiple VNFs together unfeasible,
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even if more than half of real-world enterprise network functions could logically
work in parallel [3], and to the complexity of distributed composition, which is
a renowned problem of concurrent/distributed programming that can lead to
inconsistent behavior and incorrect results [2].

Nowadays, VNFs could be replaced by Cloud-native Network Functions
(CNFs), a specialisation of VNFs designed to run in cloud environments, leverag-
ing containerization and microservice technologies. CNFs are modular, scalable,
and dynamically deployable, thus overcoming the constraints on resources that
hindered the parallel execution of monolithic VFNs. Yet, CNFs still struggle
to become standard practice mainly because their execution and coordination
essentially constitute distributed software based on message passing, whose cor-
rect implementation is notoriously challenging even for experts [4]. It is easy,
for example, to write communication actions in different programs that fail at
interacting because of wrong timing or mismatches in expected payload types.
Avoiding these bugs with code analysis tools is often impractical because of
the state explosion problem of concurrent software [5]. Furthermore, editing the
code of one VNF might break compatibility with other VNFs, so their deploy-
ment needs to be coordinated carefully. The full potential of SDNs and VNFs
deployment and management via CNFs remains therefore untapped due to the
challenge of writing and managing distributed software.

We address the problem of correctly implementing distributed CNF archi-
tectures for SDN systems by connecting the fields of SDNs and programming
languages. Specifically, we take a step towards taming the complexity of devel-
oping correct CNF architectures with a development process for SDNs based on
Choreographic Programming [6] (CP), a recent programming paradigm for con-
current and distributed software. CP allows developers to write a coordination
plan (a ‘choreography’) for a set of distributed roles (abstractions of communi-
cating processes), which is then automatically translated by a compiler into an
executable program for each role. This approach greatly reduces code complexity,
because the planned communications become syntactically manifest and can be
expressed succinctly. Furthermore, the compilation of choreographies is backed
by well-understood mathematical theories that focus on the correct matching of
message send and receive actions in the generated programs. As a result, CP
can guarantee important safety and liveness properties like the absence of com-
munication mismatches (messages have the expected type, are sent on the right
channels, etc.) and deadlock-freedom [7].

To reify the approach we propose, we use the most advanced choreographic
language to date: Choral [8]. Practically, Choral extends the Java language with
locality information about data. In Choral, T@A denotes data of type T located
at a participant, also called role, A. Given a collection of located data, we can
move any of these values from a role to another with methods that take data
at a role and return it at second one. Following this abstraction, we propose to
model a CNF as a role and have multiple CNFs participate in a choreography to
implement a desired distributed behaviour. Our main contribution is a prototype
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software development method for SDNs based on Choral, called Choreography-
Defined Network (CDN), which we schematically represent as follows.

Choral
Choreography

Choral
Compiler
======⇒

Java code
for each VNF
+ local code

Java Compiler
& Containerisation==============⇒

CNF
executables

In CDN, developers write a choreography that collectively defines the overall
behaviour of multiple CNFs. Then, leveraging Choral’s compiler, they obtain the
implementation of each VNF for the target SDN as a Java program that they can
link to local code (which can implement some private logic, e.g., traffic filtering),
compile it to Java executables and containerise it to obtain a deployable CNF.

To the best of our knowledge, this is the first work that proposes such a
connection, of which we provide a concrete instantiation, through the usage of
Choral and the implementation of a timely, representative case study on network
attack management and mitigation of Distributed Volumetric Attacks. We show
that, by using a choreographic approach, it is possible to program networks
going beyond the simple chaining of functions, allowing for more complex parallel
patterns. Besides managing complexity, the choreographic approach provides a
by-construction guarantee that removes problems such as deadlocks and race
conditions.

In this paper, we provides the necessary background knowledge, and com-
pares our approach with related work, in Sect. 2. Then, in Sect. 3, we present a
case study focused on mitigating Distributed Denial of Service Attacks (DDoS)
that we use to showcase the practical application of CDN. Section 4 describes the
implementation of the use case illustrating both the ergonomics of the approach
and how it naturally lends itself to translating workflow-like schemas into code
artefacts that generate the implementation of the system. In Sect. 5, we discuss
the advantages and challenges of the choreographic approach. In Sect. 6, we draw
closing remarks and discuss future work.

2 Background and Related Work

2.1 Modern Networking

Modern architectures are the product of two (r)evolutionary waves of innovation.
The first wave saw the advent of layering and “softwarisation” of network func-
tions. It began with the separation of duties between the control plane (man-
aging sessions and signalling) and user plane (handling data traffic)—as, e.g.,
adopted in the Software-Defined Networking (SDN) model, which places the
burden of network programming fully on a controller that gives detailed forward-
ing instructions to devices via a dedicated protocol [9]—and proceeded with the
introduction of Virtual Network Functions (VNFs), i.e., software-based network
components such as routers and security gateways.



246 S. Giallorenzo et al.

Network Function Virtualization (NFV), the process of replacing specialized
devices with VNFs that can be deployed, e.g., on a virtual machine or a con-
tainer, nicely integrates into the SDN paradigm [10]. Separating VNFs from their
underlying hardware introduces various management challenges, such as map-
ping services to NFV networks, placing VNFs correctly to fulfil service objectives,
and dynamically allocating and scaling hardware resources. It also involves mon-
itoring the location of VNF instances and managing fault detection and recovery
across the network.

To support the development of NFV components, the Linux Foundation, in
cooperation with ETSI, launched an open-source reference platform called the
Open Platform for Network Function Virtualization (OPNFV)1 in 2014, and
later expanded to include the Management and Orchestration (MANO) section.

The second wave saw some intelligence put back on a programmable data
plane (PDP) by leveraging devices that can execute code, e.g., P4-enabled
switches [11,12], to re-enable line-rate traffic analysis. To avoid losing the advan-
tages of the SDN/NFV approach, these devices should be integrated in the
management paradigm. To this end, various approaches have been proposed for
runtime interaction with P4 devices [13], with Real Time Pipeline Reconfigura-
tion being the latest frontier of network programmability [14]. Clearly, choosing
how the data plane devices should behave in different conditions is a decision
that needs to be orchestrated together with all the higher-level network man-
agement decisions.

2.2 Choreographic Programming and Choral

Choreographic Programming [7,15–18] sinks its roots in service-oriented pro-
gramming. Service-orientation distinguishes between two ways of implementing
the logic of services that belong to a distributed system: orchestration and chore-
ography.

In orchestration, one service, called the orchestrator, coordinates the actions
of the other services involved in an architecture. The orchestrator encapsulates
and executes the distributed system’s logic, managing all interactions among the
participating services. While orchestration simplifies implementation and verifi-
cation against a reference specification, it has several drawbacks. The orchestra-
tor acts as a single control point, thus it can become a twofold bottleneck: its
computational resources may reduce the efficiency at which it dictates operations
to other services, and it may add latency in scenarios with network limitations,
since it must mediate all data exchanges. Furthermore, it is a potential single
point of failure and a highly valuable target for cyberattacks, putting system
resilience at risk.

As an alternative to orchestration, choreographies distribute the logic of the
distributed system among the participants in the architecture. Like a chore-
ographed performance, each service in a choreography plays a specific role and
performs the corresponding actions, implementing its part in the architecture’s

1 https://www.opnfv.org/.

https://www.opnfv.org/
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overall interaction scheme. In this paper, we follow an interpretation of chore-
ographies called choreographic programming, whereby developers specify the
actions and interactions of all the involved services as a choreographic program.
Then, given a source choreography, the developers use a compiler to automati-
cally generate the correct code of all the services that participate therein.

CP differentiates itself from neighbouring approaches, such as using chore-
ographies as specifications or as types [19], by the fact its artefacts are written in
a fairly concrete language. For instance, a choreographic language usually allows
programmers to specify the distribution of values among the participants, mes-
sage exchanges, and distributed branching behaviours. The hallmark characteris-
tic of choreographic programming is that programmers cannot express deadlocks
on messages—thanks to the fact that interactions syntactically pair the sending
and reception of messages. Then, compilers that support behaviour-preserving
properties can generate the code of the participants from a given choreography,
guaranteeing that their combined, distributed execution faithfully follows the
semantics of the source, including the absence of message deadlocks.

Concretely, we focus on the usage of Choral [8], the first language that marries
choreographic programming with object orientation. In Choral, T@A denotes data
of type T at the role A, which one can move by applying methods that take data
at a role and return it at another one. Objects that provide these methods are
typically called channels. For example, the following two lines of Choral code
produce some data at a role A and then use a channel to copy the data to
another role B.

1 PacketFeature@A x = analyser.extractFeatures();
2 PacketFeature@B y = channel.<PacketFeature>com(x); Choral

Note how, in the second line, the implicit send action at A and receive action
at B are safely abstracted away by the atomic invocation of method com. Using
the Choral compiler, we obtain the Java code for A and B, shown below, where we
find the above actions implemented by the respective participants: A generates
the data (in x) and sends it via channel, which B uses to receive it (in y).

Given a Choral program, we can compile it into pure Java libraries, each
implementing the behaviour of one of the participants. As an example, we report
below the Java code for A (left) and B (right) compiled from Choral. Using their
respective Java code, programmers can modularly compose the choreographic
behaviour of a role with local libraries and correctly participate in their dis-
tributed architecture.
// Implementation of A
PacketFeature x = analyser.extractFeatures();
channel.<PacketFeature>com(x); Java

// Implementation of B
PacketFeature y = channel.<PacketFeature>com();

Java

2.3 Related Work

Since the first release of the Open-Source MANO framework by the Etsi Founda-
tion in 2016, the focus of most of the related research has been on enhancing the
adaptability, efficiency, and security of VNF deployments in increasingly complex
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network environments. Contrarily, only a few works consider the communication
logic between NFVs, mainly looking at standardising the identification and rep-
resentation of an NFV through descriptors.

Nguyen et al. [20] introduced an AI-driven approach to VNF chain orchestra-
tion, which optimises resource allocation through predictive analysis of network
demands and conditions. He et al. [21] expanded on the integration of VNFs
with edge computing, proposing a decentralised orchestration model that enables
more efficient data processing and reduces the strain on core network resources.
This model leverages edge nodes to perform local data processing before trans-
ferring information to centralised servers, thereby enhancing the responsiveness
of network services. He et al.’s approach improves the ability to automatise the
process of NFV deployment via resource allocation analysis. However, there is no
reference to the possibility of automating the generation of the VNFs themselves
through a more structured, high-level language, which is instead one of the main
advantages of our solution.

To the best of our knowledge, the only approach for VNF definition that
can be considered at a similar level of abstraction as ours is Intent-Based Net-
working (IBN). IBN is a concept that aims to apply automation intelligence
to devise network configuration plans, replacing the manual processes of initial
set up and reaction to issues. Similar to the choreographic approach, IBN can
abstract and define the behavior of the network functions at a higher level; yet,
in its current state, it would require a different hardware technology, making its
implementation not promptly feasible [22].

Focussing on security, Hasneen and Sadique [23] surveyed the security chal-
lenges 5G must face when implementing its slicing capabilities with SDN and
VNF technologies. In particular, Lakshmanan et al. [24] and Sun et al. [3] provide
deployment solutions that can prevent a chain misconfiguration or vulnerability
by design, but they consider the simplified scenario in which functions are not
invoked in parallel.

Considering multidomain VNF deployment, Huff et al. [25] address the chal-
lenge of the management of the reliability of the network deployment in different
domains (e.g., cloud providers, on-premises servers, etc.) with an architecture
that can connect to the different chains in the cloud through tunnels (VPN or
VXLAN) and guarantee a certain level of reliability. With the choreographic
approach, the reliability level can be natively introduced in the choreographic
logic in a way that is both terse and reusable.

Regarding the case study we chose for the validation of our approach (cf.
Sects. 3 and 4), the closest related work is SDNShield [26], a network solution
based on NFV technologies that enforces comprehensive defence against poten-
tial DDoS attacks on SDN control plane. The authors implemented their scheme
by deploying VNFs, but differently from us, they rely on a centralised SDN
controller that has to manage the flow on the chain; the controller is a unique
point of failure that reduces the reliability of the network and possibly consti-
tutes a bottleneck. In addition, the logic is hardcoded inside VNFs, which makes
it not portable to local scenarios and difficult to adapt to other attacks. Our
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choreographic approach allows more flexibility and adaptability to the scenario,
yet introducing better resilience by eliminating by construction problems like
deadlocks and races.

3 A Case Study on DoS Mitigation

To showcase the usage of choreographic programming for the development of
an SDN, we consider the case of using traffic analysis to detect volumetric net-
work attacks. In particular, we aim to detect attacks using anomaly detection
techniques, such as flow asymmetry [27], characterised by the possibility of gen-
erating many false positives depending on the anomaly threshold that is set or
the efficiency of the detection engine [28]. In these scenarios, an effective strategy
is to combine multiple detection engines, with different sensitivities and thresh-
olds [29] to have a deeper and more certain result rather than relying on a single
oracle.

We consider a network topology in which traffic flows through a switch,
programmed to mirror it towards virtual network functions deployed on the
edge, to avoid sending huge amounts toward, e.g., a cloud computing centre. As
visualised in Fig. 1, the network relies on the following four VNFs:

– Split&Agg (SA). This function sends the traffic to the VNFs in charge of
analysing it, possibly selecting which ones to involve, and then deciding which
packets should be forwarded depending on the received responses.

– Volumetric Anomaly Traffic Inspection (VOL). This function is configured
with a set of Anomaly detection rules2 that try to identify the maliciousness
of a specific flow. The output is a “Benign/Malicious” answer to tell whether
the flow must be deeper analysed or it is a legit flow.

– ML Detection Engine (ML). This function uses ML techniques (e.g., a neural
network [30]) to inspect and detect if a flow is malicious or not, with a known
level of reliability. When a malicious flow is detected it reports the finding to
the first VNF.

– Signature Attack Detection (SIG). Every attack (e.g., DoS, Spoofing) can
be represented with a signature (e.g., a hash of the payload). A commonly
done by antivirus software, this function checks the flows against a database
of signatures to find indications of known attacks. This detection mechanism
is the fastest and less prone to false positives, but it cannot detect attacks
that have not been previously classified.

As presented in Fig. 1, the traffic is first mirrored by the SW to SA that filters
the packets to forward to all the other three VNF. The VOL, ML, and SIG
functions receive the filtered flow from SA and perform their analysis in parallel
independently. When they reach a decision and classify the flow either as malign
or benign, they independently inform the SA about the decision. Notice that
the interaction could also be more complex since VOL may not be able to make

2 https://www.ibm.com/docs/en/qradar-on-cloud?topic=rules-anomaly-detection.

https://www.ibm.com/docs/en/qradar-on-cloud?topic=rules-anomaly-detection
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Fig. 1. A comparison of the case study workflow using the choreographic approach (left
side) vs the classic SDN orchestrated one (right side). The red dotted arrows represent
a new attack signature generated by each VNF, and the yellow ones are the workflow
possibilities (when the VNF can stop the detection process) (cf. Sect. 4). (Color figure
online)
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a decision due to insufficient data and, as a consequence, SA can instruct to
increase the amount of traffic to collect (Increase Window Size arrow).

To further illustrate the advantage of the choreographed approach w.r.t. the
orchestrated one, on the right side of Fig. 1 we represented the same workflow
but implemented with a classic SDN NVF chain with a centralised controller.
The red dotted arrows on the left side show two more inter-VNF communications
that can happen without the mediation of the controller, which in these cases
would be useless in principle since the interactions do not belong to the process
of attack detection. These messages are used to update SIG when a new attack
is confidently detected, and its signature can be added to the database. These
actions improve the system without overloading the controller. The same inter-
actions are represented with the same red dotted arrows on the right side, where
is it possible to note the difference; they must always go back to the centralized
controller flow, and they cannot act independently. The yellow dashed arrow
otherwise indicates the direction of the chain flow. As can be seen in the choreo-
graphic approach (left side) any NFV can independently interrupt the analysis,
if appropriate (e.g., high-confidence attack detection), while the classical app-
roach (right side) each time needs to pass the whole chain before producing a
result.

Finally, also the reaction to the attack can bypass the controller in the interest
of timeliness (leftmost left-pointing arrows). SA can use P4Runtime3 to instruct
the switch to stop monitoring benign flows, or to implement a mitigation action
(e.g., packet filtering) against a malicious flow.

4 Implementation

We now report salient remarks on the implementation of the case study from
Sect. 3: its Choral implementation and its deployment as a system of VNFs.

4.1 Choral Implementation

We illustrate the experience of programming the scenario from Sect. 3 using
Choral by focusing on the multiparty interaction between the volumetric
anomaly traffic inspection function VOL, the ML detection engine MLE, and the sig-
nature attack detection function SIG for updating the attack signature (the red,
dot-dashed arrows within the chain workflow in Fig. 1). The interested reader
can find the full code that implements the case study at https://anonymous.
4open.science/r/chorSDN-676D.

Recalling the relevant exchanges in Fig. 1, ML and VOL send to SIG their
analysed data signatures, which then SIG processes to label the flow. A possible
Choral implementation of said exchange is the following.

Optional@SIG<DataSignature> s1 = ch_ml_sig.<>com( ml_analyser.genSignature() );
Optional@SIG<DataSignature> s2 = ch_vol_sig.<>com( vol_analyser.genSignature() );
sig_analyser.labelFlow( s1, s2 ); Choral

3 https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html.

https://anonymous.4open.science/r/chorSDN-676D
https://anonymous.4open.science/r/chorSDN-676D
https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html


252 S. Giallorenzo et al.

In the first line, on the right of the assignment, we write that ML sends to SIG
the result of the analysis of the data it previously processed, found in the object
(located at ML) ml_analyser and obtained through the invocation of the method
genSignature. The communication happens by passing to the method com of the
object ch_ml_sig the result of genSignature. Like channel in Sect. 2.2, ch_ml_sig
is a (symmetric) channel shared between ML and SIG, which transmits the data
returned by genSignature—an Optional that can contain the DataSignature of
the attack, if any—to SIG. At the left of the assignment, we find the variable s1,
local to SIG, where it stores the data sent from ML. Similarly, in the second line,
we find that VOL sends a possible attack signature to SIG, which stores said
data in s2. At the third line, SIG invokes the method labelFlow of its analyzer
(sig_analyser) to update its set of attack signatures.

The Choral code above is compiled into separate Java implementations for
VOL, ML, and SIG, as shown below.

// Implementation for SIG
Optional<DataSignature> s1

= ch_ml_sig.<>com();
Optional<DataSignature> s2

= ch_vol_sig.<>com();
sig_analyser.labelFlow( s1, s2 );

// Implementation for ML
ch_ml_sig.<>com(ml_analyser.genSignature());

// Implementation for VOL
ch_vol_sig.<>com(vol_analyser.genSignature());

We conclude our example by contrasting the distributed implementation
above with the one below, which implements the same logic in the traditional
orchestrated way, where SA is the orchestrator. The main takeaway is that the
orchestrator needs to mediate the interactions between VOL, ML, and SIG, both
imposing an unnecessary bottleneck and increasing the total number of commu-
nications (wasting time and bandwidth and exposing the system to increased
risk of communication failures).

1 // orchestration at SA
2 Optional@SA<DataSignature> t1 = ch_ml_sa.<>com( ml_analyser.genSignature() );
3 Optional@SA<DataSignature> t2 = ch_vol_sa.<>com( vol_analyser.genSignature() );
4 Optional@SIG<DataSignature> s1 = ch_sa_sig.<>com( t1 );
5 Optional@SIG<DataSignature> s2 = ch_sa_sig.<>com( t2 );
6 sig_analyser.labelFlow( s1, s2 ); Choral

4.2 Deployment of the Network

For the creation of the SDN, as practised in cloud network development, each
VNF was instantiated within a container. The infrastructure was created accord-
ing to custom docker Linux-like family images, connected via a local docker net-
work capable of handling up to 14MB/s bandwidth. All code was executed on
a PC with Ubuntu 22.04 with 16GB RAM and an i7 core processor. For the
creation and management of the infrastructure, we used the Kathara tool4, i.e.,
4 https://www.kathara.org/.

https://www.kathara.org/
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an open-source container-based network emulation system for testing produc-
tion networks in a sandbox environment. We therefore created an architecture
composed of 5 containers, one for each of the 4 VNFs and the switch. The vir-
tual switch is developed in the P4 language and contains flow rules to monitor
anomalies. The P4 switch was emulated using the v1 model architecture for P4
and its virtualized version BMv2.5 The VNF were instead deployed creating a
docker image for each of the VNFs and installing the specific tools and settings
for each one.

For implementing VOL we used a modified version of a symmetric Count-min
Sketch [31] designed by observing the behavior of volumetric DDoS attacks. This
unexpected value is represented by the traffic volume between the compromised
client and the victim which, the more restricted the flow surface is, the more is
expected to be much larger than the traffic volume in the opposite direction.

ML uses a standard Random Forest Classifier implemented using the scikit-
learn python library,6 with the ability to read a process real-time traffic with the
scapy library.7 For the training set we used a custom dataset composed of 10%
of benign traffic (taken from the CIC-IDS2017 dataset [32]) and 90% of DDoS
traffic (generated with the hping38 Linux utility).

SIG has instead been implemented with a light version of Suricata9 threat
detection software and a database of default rules taken from the nuclei-discover
repository [33].
A new database entry, in the form of a new rule/signature, can be added if the
overall system identifies a new malicious flow. In this way, either the choreogra-
phy in the final stage, ML or VOL can add new signatures to the database of
the SIG.

The overall workflow of the deployment of the scenario is shown in Fig. 2. The
initial choreography written in Choral is compiled and the result is a set of java
files, one for each VNF. The Choral compiled code and the code to implement
the local functions are then compiled to obtain a JAR application ready to be
deployed in a container. Kathara then creates the final infrastructure, loading
the JAR application and installing the necessary tools to execute the VNF at
runtime. Once the containers are created, Kathara creates the network scenarios
and deploys the infrastructure using a cloud provider, which in our case has been
a local deployment with both docker containers and docker network.

Test. To test our network, we generated traffic with up to 5 malicious flows.
VOL has been set with a low detection threshold, useful for promptly identifying
a volumetric attack and submitting it for analysis to MLE. We ran the attack
traffic for 5min and considered the amount of traffic management generated from
all the REST API and inter-process communication calls. As expected, even in

5 https://github.com/p4lang/behavioral-model.
6 https://scikit-learn.org/stable/.
7 https://scapy.net/.
8 http://wiki.hping.org/.
9 https://suricata.io/.

https://github.com/p4lang/behavioral-model
https://scikit-learn.org/stable/
https://scapy.net/
http://wiki.hping.org/
https://suricata.io/
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Fig. 2. The case study workflow, from the Choral code to the infrastructure deployment

the worst scenario of 5 malicious flows generated (which represented 90% of the
total traffic) the amount of management traffic generated was proportional to
the number of malicious flows identified, and reached a maximum level of 15MB
that was manageable by our infrastructure.

5 Discussion: Advantages and Limitations

We conclude by discussing the advantages and open challenges of using chore-
ographic programming and looking at future work. We structure the discussion
by comparing our proposal against the traditional SDN implementation with a
centralized controller orchestrating all the function chains.
Advantage: Direct Intra VNF Communications. The choreographic approach
allows direct communication between VNFs. In classical SDN architectures, such
communication is not possible unless hardcoded directly into the VNFs, which is
discouraged since hardcoding communication makes the component difficult to
port and extend. The best practice chosen by ETSI is instead to run all requests
through the controller, following a star-like architecture where the controller
mediates all communications. Using direct communication between the VNFs
can save traffic (e.g., no need to have two communications with the orchestrator
if a VNF has to send data to another one).
Advantage: No SDN Controller/Orchestrator. The orchestration of VNF chains
is typically implemented within the controller itself or as an application layer.
The controller (often seen as a Network Operation System) is designed to interact
with applications through a so-called Northbound Interface, similar to an oper-
ating system kernel that accesses device drivers. Traditionally, to create a VNF
chain, it is necessary to create a new northbound application, that implements
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the communication logic between VNFs. This requires implementing the com-
munication logic and adapting it to the proper controller like ONOS [34]. With
the choreographic approach, we are not tied to any particular type of controller
and we are not required to follow any specific design pattern. We are not bound
to use libraries and controller code that must be compatible with the rest of the
environment and applications. Since choreographic programming allows inde-
pendent communication among VNFs, the choreographic solution thus avoids
the need to create bottlenecks typical of controller-based SDN architecture.
Advantage: Security by Design. In a classical SDN approach, performing veri-
fication on the validity of network policies is done with various formal model
techniques such as reachability graphs [35] or by using atomic predicates [36]
at the data plane level. With choreographic programming, we use a security-by-
design approach for network development that avoids the typical communication
problems of distributed systems (e.g., deadlocks, race conditions, etc.). Moreover,
with a choreographic approach, the availability of a global overview of the entire
system eases the task of verifying the global properties of the system at the
application/logic level.
Advantage: Parallel VNF Execution. In the traditional approach, the VNFs work-
flow is often rigid and sequential: each VNF is executed one after another, lead-
ing to a linear progression of tasks. While this method is effective in ensuring
that each function is processed in a controlled manner, it may also introduce
bottlenecks and inefficiencies, especially when dealing with complex network
architectures or high volumes of data. Choreographic programming removes the
constraint of executing VNFs sequentially. Multiple VNFs can be initiated and
processed simultaneously, without the need to wait for the completion of preced-
ing tasks, unlocking new possibilities for optimizing network performance and
resource utilization.
Challenge: Failure Handling. Choreographic languages assume reliable communi-
cations. The only exception is the language theory presented in [37], which shows
that one can relax this assumption, by allowing the choreographic language to
handle local exceptions. Choral follows this strategy relying on the exception
mechanism of Java and local failure recovery code [8, Sec. 2.5] which results in
codebases that mix high-level choreographic interactions and low-level recovery
strategies. Although Choral’s object-orientation allows programmers to encap-
sulate the latter into high-level APIs, its type system can offer limited support
to reason about the robustness of recovery strategies. Indeed, supporting pro-
grammers in writing robust and effective choreographies is still an open issue
beyond Choral or even choreographic programming.
Challenge: Knowledge of Choice. When a choreography describes a choice
between two possible branches, all affected participants must be (made) aware of
the outcome to ensure that their local implementations agree on which branch to
execute. In choreographies, this is called knowledge of choice (KoC). The stan-
dard solution for achieving KoC is communicating the choice outcome to the
affected participants using special messages used by choreographic compilers to
check that KoC is indeed achieved. Because of limitations in the current com-
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pilers, some of these communications might be redundant and there is ongoing
work to address this issue: [38] proposed a more flexible analysis for the Choral
compiler that allows piggybacking of these special messages batching them with
other communications in the protocol; [39,40] detail automatic procedures for
inserting these communications for programmers; [41] proposed an analysis in an
abstract choreographic language that dispenses from many of the communica-
tions needed by current analyses.

6 Conclusion

We presented a novel methodology for service composition in Software-Defined
Networks and Network Function Virtualization, specifically tailored for cloud
environments. Departing from conventional sequential service chaining, the app-
roach uses choreographies to model Virtual Network Functions’ (VNFs) roles and
interactions. We showcase several advantages of the proposed approach, such as
a holistic view of interactions and automatic code generation for each VNF,
which eliminates the need for a centralised control node, reducing concurrency
issues and communication overhead with the controller.

The validity of the proposed approach derives from the CP paradigm, which
guarantees the implementation of a correct-by-construction VNF architecture
given a choreography. We demonstrated the feasibility of the proposed approach
via a practical case study where we used the state-of-the-art choreographic lan-
guage Choral to develop a distributed composition of several VNFs collaborating
to analyse network traffic and detect security threats. Qualitatively, we show that
our approach decreases the number of communications happening in the system
w.r.t. the traditional SDN implementation as an orchestrated system. Providing
a quantitative validation is a necessary future step of this research direction,
considering representative, real scenarios and metrics that demonstrate the effi-
ciency of the proposed solution.

We envision two further future directions. The first one encompasses the
challenges presented above, related to error handling and recovery. The second
one envisages the definition of a meta-choreography that could define the infras-
tructural interactions needed to deploy the VNFs, by interacting with the SDN
controller, and the dynamic and flexible forwarding of traffic by means of pro-
grammable data plane devices. A further extension of this undertaking could be
the development of a new compiler for Choral that, instead of generating Java,
could output P4 code, so that some parts of the distributed application may be
executed on programmable switches instead of containers or virtual machines.
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