
Graceful Interruption of Request-Response
Service Interactions�

Mila Dalla Preda, Maurizio Gabbrielli, Ivan Lanese,
Jacopo Mauro, and Gianluigi Zavattaro

Lab. Focus, Department of Computer Science/INRIA, University of Bologna, Italy
{dallapre,gabbri,lanese,jmauro,zavattar}@cs.unibo.it

Abstract. Bi-directional request-response interaction is a standard communica-
tion pattern in Service Oriented Computing (SOC). Such a pattern should be
interrupted in case of faults. In the literature, different approaches have been con-
sidered: WS-BPEL discards the response, while Jolie waits for it in order to allow
the fault handler to appropriately close the conversation with the remote service.
We investigate an intermediate approach in which it is not necessary for the fault
handler to wait for the response, but it is still possible on response arrival to
gracefully close the conversation with the remote service.

1 Introduction

Service-oriented computing (SOC) is a programming paradigm based on the composi-
tion of services, computational entities available on the net. According to WSDL [9],
the standard for describing web service interfaces, services can be invoked according
to two main modalities: one-way and request-response. In one-way communication a
message is sent to a remote service. In request-response communication a message is
sent and an answer is waited for before continuing the computation.

Interaction with remote services may incur in errors of different kinds: the remote
service may disconnect, messages may be lost, or a client may interrupt the interaction
with a remote service exactly in between the request and the corresponding response.
To avoid that such an error causes the failure of the whole application, error handling
techniques have been developed. They are commonly based on the concept of fault han-
dler and compensation. A fault handler is a piece of code devoted to take the application
to a consistent state after a fault has been caught. A compensation is a piece of code
devoted to undoing the effect of a previous activity because of a later error.

As an example, consider a hotel reservation service. A reservation can be canceled,
but if it is not annulled the cost of one night will be charged in case of no show. If the
trip has to be annulled, the compensation for the hotel reservation has to be executed,
thus canceling the reservation and avoiding the cost of a no show.

Jolie [3] is a language for programming service-oriented applications. Jolie request-
response invocation establishes a strong connection between the caller and callee, thus
it should not be disrupted by faults. To this end, callee faults are notified to the caller
that can thus manage them. Symmetrically, in case of caller faults the answer from the

� Partly funded by the projects EU FP7-231620 HATS and ANR-2010-SEGI-013 AEOLUS.

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 590–600, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Graceful Interruption of Request-Response Service Interactions 591

callee is waited for and used during recovery. This allows, in particular, to compensate
successful remote activities which are no more needed because of the local fault. This
is the case of the hotel reservation above.

WS-BPEL [8], a main standard in the field, has a different approach: in case of caller
faults execution can continue without waiting for the response, and the response is dis-
carded upon arrival. In particular, it is not possible to write code that will be executed
upon receipt of the response. The Jolie approach allows for programming safer appli-
cations. The fact that the request-response pattern is not disrupted by errors has been
proved in [3], by relying on SOCK [4,2], a calculus defining the formal semantics of
Jolie. A nasty side effect of the Jolie approach is that the client has to wait for answers
of request-response invocations before proceeding in its execution. This slows down
the caller execution. For instance, referring to the hotel reservation example, the client
cannot continue its operations before the answer from the hotel has been received and
(s)he gets stuck whenever the answer is lost. This drawback is unacceptable for pro-
gramming applications over the net. Such a kind of problem is normally solved using
timeouts, but they are not available in Jolie. Also, they are not easy to mimic.

We propose here a new approach to error handling in Jolie, allowing on one side
to compensate undesired remote side effects, and ensuring on the other side that local
computation is not slowed down in case of late answers. In particular, this new approach
allows to easily program timeouts. We also extend the approach to deal with concurrent
invocations of multiple services, as needed for implementing speculative parallelism.

2 SOCK

We first introduce SOCK [4], the calculus that defines the semantics of Jolie [3] pro-
grams, and then we extend it to account for request-response and multiple request-
response service invocations. SOCK is suitable for illustrating our approach since it
has a formal SOS semantics, it provides request-response as a native operator, and it
has a refined approach to error handling.

In the following we present the three layers in which SOCK is structured, omitting
the aspects that are not central for us (see [4] for a detailed description).
Service behavior layer. The service behavior layer describes the actions performed
by services. Actions can be operations on the state or communications. Services are
identified by the name of their operations, and by their location.

SOCK error handling is based on the concepts of scope, fault, and compensation.
A scope is a process container denoted by a unique name. A fault is a signal raised by
a process when an error state is reached. A compensation is used either to smoothly
stop a running activity in case of an external fault, or to compensate the activity after
its successful termination (this encompasses both WS-BPEL termination and compen-
sation mechanisms). Recovering mechanisms are implemented by exploiting processes
called handlers. We use fault handlers and compensation handlers. They are executed
to manage respectively internal faults and external faults/compensation requests.

SOCK syntax is based on the following (disjoint) sets: V ar, ranged over by x, y,
for variables, V al, ranged over by v, for values, O, ranged over by o, for one-way
operations, Faults, ranged over by f , for faults, and Scopes, ranged over by q, for

592 M. Dalla Preda et al.

Table 1. Service behavior syntax with faults

P, Q : : = o@l(y) output o(x) input
x := e assignment P ;Q sequence
P |Q parallel comp.

∑
i∈I oi(xi); Pi external choice

if χ then P else Q det. choice while χ do (P) iteration
0 null process {P : H : u}q⊥ active scope
inst(H) install handler throw(f) throw
comp(q) compensate 〈P 〉 protection

scope names. Loc is a subset of V al containing locations, ranged over by l. We denote
as SC the set of service behavior processes, ranged over by P, Q, We use q⊥ to
range over Scopes ∪ {⊥}, whereas u ranges over Faults ∪ Scopes ∪ {⊥}. Here ⊥
is used to specify that a handler is undefined. H denotes a function from Faults and
Scopes to processes (or ⊥). The function associating Pi to ui for i ∈ {1, . . . , n} is
[u1 �→ P1, . . . , un �→ Pn]. Finally, we use the notation k = 〈k0, k1, ..., ki〉 for vectors.

The syntax of service behavior processes is defined in Table 1. A one-way output
o@l(y) invokes the operation o of a service at location l, where y are the variables
that specify the values to be sent. Dually, in a one-way o(x), x contains the variables
that will receive the communicated values. Assignment, sequence, parallel composition,
external and deterministic choice, iteration, and null process are standard.

We denote with {P}q a scope named q executing process P . An active scope has
instead the form {P : H : u}q⊥ , where H specifies the defined handlers. Term {P}q

is a shortcut for {P : H0 : ⊥}q, where H0 evaluates to ⊥ for all fault names and to 0
for all scope names. The argument u is the name of a handler waiting to be executed,
or ⊥ if there is no such handler. When a scope has failed its execution, either because
it has been killed from a parent scope, or because it has not been able to manage an
internal fault, it reaches a zombie state. Zombie scopes have ⊥ as scope name. Primi-
tives throw(f) and comp(q) respectively raises fault f and asks to compensate scope
q. 〈P 〉 executes P in a protected way, i.e. not influenced by external faults. Handlers are
installed into the nearest enclosing scope by inst(H), where H is the required update
of the handler function. We assume that comp(q) occurs only within handlers, and q
can only be a child of the enclosing scope. For each inst(H), H is defined only on fault
names and on the name of the nearest enclosing scope. Finally, scope names are unique.

The service behavior layer semantics generates all the transitions allowed by the
process behavior, specifying the constraints on the state that have to be satisfied for
them to be performed. The state is a substitution of values for variables. We use σ to
range over substitutions, and write [v/x] for the substitution assigning values in v to
variables in x. Given a substitution σ, Dom(σ) is its domain.

Let Act be the set of labels of the semantics, ranged over by a. We use structured
labels of the form ι(σ : θ) where ι is the kind of action while σ and θ are substitu-
tions containing respectively the assumptions and the effects on the state. We also use
the unstructured labels th(f), cm(q, P), inst(H). We use operator � for updating the
handler function:

(H�H′)(u) =
{H′(u) if u ∈ Dom(H′)
H(u) otherwise

Graceful Interruption of Request-Response Service Interactions 593

Table 2. Standard rules for service behavior layer (a �= th(f))

(ONE-WAYOUT)

o@l(x)
o(v)@l(v/x:∅)−−−−−−−−−→ 0

(ONE-WAYIN)

o(x)
o(v)(∅:v/x)−−−−−−−→ 0

(ASSIGN)

Dom(σ) = Var(e) �eσ� = v

x := e
τ(σ:v/x)−−−−−→ 0

(IF-THEN)

Dom(σ) = Var(χ) �χσ� = true

if χ then P else Q
τ(σ:∅)−−−−→ P

(SEQUENCE)

P
a−→ P ′

P ; Q
a−→ P ′; Q

(PARALLEL)

P
a→ P ′

P | Q
a→ P ′ | Q

(CHOICE)

oi(xi)
a−→ Qi i ∈ I

∑
i∈I oi(xi); Pi

a−→ Qi; Pi

STRUCTURAL CONGRUENCE

P | Q ≡ Q | P P | 0 ≡ P P | (Q | R) ≡ (P | Q) | R 0; P ≡ P 〈0〉 ≡ 0

Intuitively, handlers in H′ replace the corresponding ones in H. We also use cmp(H)
to denote the part of H dealing with compensations.

The SOCK semantics is defined as a relation →⊆ SC ×Act× SC. The main rules
for standard actions are in Table 2, while Table 3 defines the fault handling mechanism.

Rule ONE-WAYOUT defines the output operation, where v/x is the assumption on
the state. Rule ONE-WAYIN corresponds to the input operation: it makes no assumption
on the state, but it specifies a state update. The other rules in Table 2 are standard. The
internal process P of a scope can execute thanks to rule SCOPE in Table 3. Handlers are
installed in the nearest enclosing scope by rules ASKINST and INSTALL. According to
rule SCOPE-SUCCESS, when a scope successfully ends, its compensation handlers are
propagated to the parent scope. Compensation execution is required by rule COMPEN-
SATE. The actual compensation code Q is guessed, and the guess is checked by rule
COMPENSATION. Faults are raised by rule THROW. A fault is caught by rule CATCH-
FAULT when a scope defining the corresponding handler is met. Activities involving the
termination of a sub-scope and the termination of internal error recovery are managed
by the rules for fault propagation THROW-SYNC, THROW-SEQ and RETHROW, and by
the partial function killable. Function killable computes the activities that have to be
completed before the handler is executed and it is applied to parallel components by
rule THROW-SYNC. Moreover, function killable guarantees that when a fault is thrown
there is no pending handler update. This is obtained by making killable(P, f) undefined
(and thus rule THROW-SYNC not applicable) if some handler installation is pending in
P . The 〈P 〉 operator (described by rule PROTECTION) guarantees that the enclosed
activity will not be killed by external faults. Rule SCOPE-HANDLE-FAULT executes
a handler for a fault. A scope that has been terminated from the outside is in zombie
state. It can execute its compensation handler thanks to rule SCOPE-HANDLE-TERM,
and then terminate with failure using rule SCOPE-FAIL. Similarly, a scope enters the
zombie state when reached by a fault it cannot handle (rule RETHROW). The fault is
propagated up along the scope hierarchy. Zombie scopes cannot throw faults any more,
since rule IGNORE-FAULT has to be applied instead of RETHROW.

594 M. Dalla Preda et al.

Table 3. Faults-related rules for service behavior layer (a �= th(f))

(SCOPE)

P
a−→ P ′ a �= inst(H), cm(q′,H′)

{P : H : u}q⊥
a−→ {P ′ : H : u}q⊥

(INSTALL)

P
inst(H)−−−−−→ P ′

{P : H′ : u}q⊥
τ(∅:∅)−−−−→ {P ′ : H′ �H : u}q⊥

(ASKINST)

inst(H)
inst(H)−−−−−→ 0

(THROW)

throw(f)
th(f)−−−→ 0

(COMPENSATE)

comp(q)
cm(q,Q)−−−−−→ Q

(SCOPE-SUCCESS)

{0 : H : ⊥}q
inst(cmp(H))−−−−−−−−−→ 0

(SCOPE-HANDLE-FAULT)

{0 : H : f}q⊥
τ(∅:∅)−−−−→ {H(f) : H�[f 	→ ⊥] : ⊥}q⊥

(COMPENSATION)

P
cm(q,Q)−−−−−→ P ′,H(q) = Q

{P : H : u}q′⊥
τ(∅:∅)−−−−→ {P ′ : H�[q 	→ 0] : u}q′⊥

(SCOPE-HANDLE-TERM)

{0 : H : q}⊥ τ(∅:∅)−−−−→ {H(q) : H�[q 	→ 0] : ⊥}⊥
(SCOPE-FAIL)

{0 : H : ⊥}⊥ τ(∅:∅)−−−−→ 0

(PROTECTION)

P
a−→ P ′

〈P 〉 a−→ 〈P ′〉

(THROW-SYNC)

P
th(f)−−−→ P ′, killable(Q, f) = Q′

P |Q th(f)−−−→ P ′|Q′

(THROW-SEQ)

P
th(f)−−−→ P ′

P ; Q
th(f)−−−→ P ′

(CATCH-FAULT)

P
th(f)−−−→ P ′,H(f) �= ⊥

{P : H : u}q⊥
τ(∅:∅)−−−−→ {P ′ : H : f}q⊥

(IGNORE-FAULT)

P
th(f)−−−→ P ′,H(f) = ⊥

{P : H : u}⊥ τ(∅:∅)−−−−→ {P ′ : H : u}⊥
(RETHROW)

P
th(f)−−−→ P ′,H(f) = ⊥

{P : H : u}q
th(f)−−−→ 〈{P ′ : H : ⊥}⊥〉

where

killable({P : H : u}q , f) = 〈{killable(P, f) : H : q}⊥〉 if P ≡/ 0
killable(P | Q,f) = killable(P, f) | killable(Q,f)
killable(P ; Q,f) = killable(P, f) if P ≡/ 0
killable(〈P 〉 , f) = 〈P 〉 if killable(P, f) is defined
killable(P, f) = 0 if P ∈ {0, o(x), o@l(x), x := e, if χ then P else Q, while χ do (P)∑

i∈W oi(xi); Pi, throw(f), comp(q)}

Service engine layer. The service engine layer manages the service state and instances.
A service engine Y can be a session (P,S), where P is a service behavior process and
S is a state, or a parallel composition Y |Y of them. The service engine layer allows to
propagate only labels such that the condition σ (if available) is satisfied by the current
state, and applies to the state the state update ρ.

Services system layer. The service system layer allows the interaction between dif-
ferent engines. A service system E can be a located service engine Y @l or a parallel
composition E ‖ E of them. The services system layer just allows complementary com-
munication actions to interact, transforming them into internal steps τ , and propagates
the other actions.

Graceful Interruption of Request-Response Service Interactions 595

3 Request-Response Interaction Pattern

A request-response pattern is a bi-directional interaction where a client sends a message
to a server and waits for an answer. When a server receives such a message, it elaborates
the answer and sends it back to the client. In the literature there are two proposals to deal
with a client that fails during a request-response interaction. The WS-BPEL approach
kills the receive activity and, when the message arrives, it is silently discarded. In Jolie
instead, clients always wait for the answer and exploit it for error recovery.

Here we present an intermediate approach: in case of failure we wait for the answer,
but without blocking the computation. Moreover, when the answer is received we allow
for the execution of a compensation activity. Let Or be the set of request-response oper-
ations, ranged over by or. We define the request-response pattern in terms of the output
primitive or@l(y, x, P), also called solicit, and of the input primitive or(x1, y1, Q).
When interacting, the client sends the values from variables y to the server, that stores
them in variables x1. Then, the server executes process Q and, when Q terminates, the
values in variables y1 are sent back to the client who stores them in variables x. Only
at this point the execution of the client can restart. If a fault occurs on the client-side
after the remote service has been invoked, but before the answer is received, we allow
the client to handle the fault regardless of the reply, so that recovery can start immedi-
ately. However, we create a receiver for the missing message in a fresh session so that,
if later on the message is received, the operation can be compensated. The compensa-
tion is specified by the parameter P of the solicit operation. If instead a fault is raised
on the server-side during the computation of the answer, the fault is propagated to the
client where it raises a local fault. In this case there is no need to compensate the remote
invocation, since we assume that this is dealt with by local recovery of the server.

Service behavior calculus - extension. We extend here the behavioral layer with the
request-response and with few auxiliary operators used to define its semantics.

or@l(y, x, P) Solicit or(x1, y1, Q) Request-Response
Exec(l, or, y, P) Req.-Resp. execution Wait(or , y, P) Wait
or!f@l Fault output Bubble(P) Bubble

Exec(l, or, y, P) is a server-side running request-response: P is the process computing
the answer, or the name of the operation, y the vector of variables to be used for the
answer, and l the client location. Symmetrically, Wait(or, y, P) is the process waiting
for the response on client-side: or is request-response operation, y is the vector of vari-
ables for storing the answer and P is the compensation code to run in case the client
fails before the answer is received. When a fault is triggered on the server-side, an error
notification has to be sent to the client: this is done by or!f@l, where or is the operation,
f the fault and l the client location. If a fault occurs on client-side, we have to move
the receipt operation to a fresh, parallel session, so that error recovery can start imme-
diately. This is done by the primitive Bubble(P), which allows to create a new session
(a “bubble”) executing code P . This primitive is the key element that allows a failed
solicit to wait for a response outside its scope and potentially allowing its termination
regardless of the arrival of the answer.

The semantics of the behavior layer is extended with the rules presented in Table 4
(the last rule refers to the engine). Function killable is also extended, as follows:

596 M. Dalla Preda et al.

Table 4. Request-response pattern and engine rules

(SOLICIT)

or@l(y,x, P)
or(v)@l(∅:v/x)−−−−−−−−−−→ Wait(or,x, P)

(REQUEST)

or(x,y, P)
or(v)::l(∅:v/x)−−−−−−−−−→ Exec(l, or,y, P)

(REQUEST-EXEC)

P
a−→ P ′

Exec(l, or,y, P)
a−→ Exec(l, or,y, P

′)

(THROW-REXEC)

P
th(f)−−−→ P ′

Exec(l, or,y, P)
th(f)−−−→ P ′| 〈or!f@l〉

(REQUEST-RESPONSE)

Exec(l, or,y,0)
or(v)@l(v/y:∅)−−−−−−−−−−→ 0

(SOLICIT-RESPONSE)

Wait(or,x, P)
or(v)(∅:v/x)−−−−−−−−→ 0

(SEND-FAULT)

or!f@l
or(f)@l(∅:∅)−−−−−−−−→ 0

(RECEIVE FAULT)

Wait(or,x, P)
or(f)(∅:∅)−−−−−−→ throw(f)

(CREATE BUBBLE)

Bubble(P)
τ(∅:∅)[[P]]−−−−−−→ 0

(ENGINE-BUBBLE)

P
τ(∅:∅)[[Q]]−−−−−−→ P ′ Q �= 0

(P,S) τ−→ (P ′,S) | (Q,S)
– killable(Exec(l, or, y, P), f) = killable(P, f)|〈or !f@l〉
– killable(Wait(or, x, P), f) = Bubble(Wait(or, x,0); P)
– killable(or!f@l, f) = or!f@l
– killable(Bubble(P), f) = Bubble(P)

Rules SOLICIT and REQUEST start a solicit-response operation on client and server
side respectively. Upon invocation, the request-response becomes an active construct
executing process P , and storing all the information needed to send back the answer.
The execution of P is managed by rule REQUEST-EXEC. When P terminates, rule
REQUEST-RESPONSE sends back an answer. This synchronizes with rule SOLICIT-
RESPONSE on the client side.

A running request-response reached by a fault is transformed into a fault notification
(see rule THROW-REXEC and the definition of function killable) on server side. Fault
notification is executed by rule SEND-FAULT, and it interacts with the waiting receive
thanks to rule RECEIVE-FAULT. When received, the fault is re-thrown at the client side.

A fault on client side instead gives rise to a bubble, creating the process that will wait
for the answer in a separate session. The bubble is created by rule CREATE BUBBLE,
and will be installed at the service engine level by rule ENGINE-BUBBLE. The label
for bubble creation has the form τ(∅ : ∅)[[P]], where P is the process to be run inside
the new session. We will write τ(∅ : ∅) for τ(∅ : ∅)[[0]]. The new receive operation
inside the bubble has no handler update, since it will be executed out of any scope, and
its compensating code P has been promoted as a continuation. In this way, P will be
executed only in case of successful answer. In case of faulty answer, the generated fault
will have no effect since it is in a session on its own.

Service engine calculus - extension. We have to add to the service engine layer a rule
for installing bubbles: when a bubble reaches the service engine layer, a new session is
started executing the code inside the bubble (rule ENGINE-BUBBLE in Table 4).

Service system calculus - extension. The service system calculus semantics is
extended by allowing the labels for request-response communication to be matched.

Graceful Interruption of Request-Response Service Interactions 597

Example. We present now an example of usage of the request-response primitive. A
first solution for the hotel reservation example described in the introduction is:

CLIENT :== bookr@hotel Imperial(〈CC,dates〉,〈res num〉,
annul@hotel Imperial(〈res num〉));

P
The bookr operation transmits the credit card number CC and the dates of the reser-

vation and waits for the reservation number. In case the user wants to cancel the reserva-
tion before receiving an answer from the hotel a fault can be used to kill this operation.
In such a case the annul operation is invoked when the answer is received to compen-
sate the bookr operation. The annul operation will be executed in a new session by
using our mechanism based on bubbles.

As a more concrete instance, we could consider the case where the user is willing
to wait a limited amount of time for the answer from the hotel, after which (s)he will
cancel the reservation. This case could be programmed by assuming a service timeout
that offers a request-response operation that sends back an answer after n seconds1:

CLIENT:==
res num:= 0;
{ inst(f �→ if res num==0 then throw(tm));
(timeoutr@timeout(〈60〉,〈 〉,0); throw(f)
| bookr@hotel Imperial(〈CC,dates〉,〈res num〉,

annul@hotel Imperial(〈res num〉)); throw(f))
}q ; P

In this scenario the timeout operation is in parallel with the booking. The first opera-
tion that finishes raises the fault f that is caught by the handler of the scope q. The fault
will kill the remaining operation and if the hotel response has not arrived yet (i.e. the
value of res num is still 0) then the fault tm is raised. P is executed otherwise.

A similar solution is not viable in BPEL: in case of timeout, the booking invocation
is killed, and if an answer arrives, it is discarded. Thus one does not know whether the
invocation succeeded or not, neither the reservation number in case of success.

In Jolie, the answer is used for error recovery. However, in case no answer is received
from the booking service, the whole service engine gets stuck. In our approach instead
the main session can continue its execution without delays.

It is difficult to apply the proposed solution when two or more solicits install handlers
or require compensation. One may try to exploit the handler update primitive, but in
this way compensations are executed inside the scope, thus they have to be terminated
before execution can proceed. This problem, and other technical difficulties, justify the
multiple solicit response primitive introduced in the next section.

4 Multiple Request-Response Communication Pattern

The request-response pattern allows one invocation to be sent and one answer to be
received. For optimization reasons, it may be important to invoke many services in
parallel, and only consider the first received answer (speculative parallelism).

1 Clearly, because of network delay the answer may be received later than expected.

598 M. Dalla Preda et al.

Table 5. Multiple request-response pattern rules

(MSR-SOLICIT)
z1 = or@l(y,x, P) �→ Q wm+1 = Wait(or,y, P) �→ Q

Wait+(z1, . . . , zn � w1, . . . , wm)
or(v)@l(∅:v/x)−−−−−−−−−−→ Wait+(z2, . . . , zn � w1, . . . , wm, wm+1)

(MSR-RESPONSE)
∀k ∈ {1, . . . , n} : wk = Wait(ork ,yk, Pk) �→ Qk i ∈ {1, . . . , n} J = {1, . . . , n} \ {i}

Wait+(� w1, . . . , wn)
ori (v)(∅:v/yi)−−−−−−−−−→ Qi|∏j∈J Bubble(Wait(orj ,yj ,0);Pj)

(MSR-IGNORE FAULT)
n > 1 wi = Wait(ori ,yi, Pi) �→ Qi i ∈ {1, . . . , n}

Wait+(� w1, . . . , wn)
ori (f)(∅:∅)−−−−−−−→ Wait+(� w1, . . . , wi−1, wi+1, . . . , wn)

Wait+(� Wait(or,y, P) �→ Q) ≡ Wait(or,y, P);Q

We model this communication pattern using a dedicated primitive that we call multi-
ple solicit-response (MSR for short). A MSR consists of a list of solicit-responses, each
one equipped with its own continuation. Formally, we define the syntax of the MSR
primitive as MSR{z1, . . . , zn} where each zi is a solicit-response with continuation
written zi = ori@li(yi, xi, Pi) �→ Qi. Intuitively, the continuation Qi is executed only
when ori@li(yi, xi, Pi) is the first to receive a successful answer.

Service behavior calculus - extension. We extend the service behavior calculus with
the MSR primitive and with some auxiliary operators:

P, Q : : = . . .
MSR{z1, . . . , zn} multiple solicit-response
Wait+(z1, . . . , zn � w1, . . . , wm) multiple wait

z : : = or@l(y, x, P) �→ Q solicit with continuation
w : : = Wait(or, y, P) �→ Q wait with continuation

In a MSR the solicits are sent one after the other, and only when all the requests have
been sent the MSR can receive a response. For this reason we introduce the multiple
wait Wait+(z1, . . . , zn � w1, . . . , wm) that specifies the solicits that still have to be
sent z1, . . . , zn, and the ones that will wait for an answer w1, . . . , wn. Thus, the MSR
primitive MSR{z1, . . . , zn} above is a shortcut for Wait+(z1, . . . , zn �). Moreover,
we have that a multiple wait with only one waiting process is structurally equivalent to
a standard wait. We formally define the behavior of the MSR primitive by extending the
service behavior semantics with the rules presented in Table 5.

The multiple wait executes all the solicit-responses through rule MSR-SOLICIT.
Once all the solicits have been sent, the multiple wait receives a successful answer
through rule MSR-RESPONSE. It continues the execution with the corresponding con-
tinuation code, and kills all the other solicits by creating a bubble for each remaining
waiting process. If a fault notification arrives as an answer, it is discarded by rule MSR-
IGNORE FAULT if there is at least another available wait. If instead there is no other
solicit waiting for an answer, the last fault received is raised (rule RECEIVE FAULT

Graceful Interruption of Request-Response Service Interactions 599

described in Table 4). When an external fault arrives a bubble containing a dead so-
licit response is created for every solicit that has been sent, as specified by the function
killable that is extended in the following way:

killable(Wait+(z1, . . . , zn � w1, . . . , wm), f) =
∏

Wait(orj
,yj ,Pj) �→Qj∈{w1,...,wm}

Bubble(Wait(orj , yj ,0); Pj)

The MSR primitive is perfectly suited to capture speculative parallelism scenarios. Con-
sider for instance the hotel reservation problem defined in the introduction. Suppose to
use two booking services for making the hotel reservation, and that you would like to
get the acknowledgment in 1 minute. If the booking services are located at A and B and
if we use the timeout service introduced before, this service could be defined as:
CLIENT :== msr {

timeoutr@timeout(〈60〉,〈 〉,0) �→ throw(tm)
bookr@H 1(〈CC,dates〉,〈res num〉, annul@H 1(〈res num〉)) �→ 0
bookr@H 2(〈CC,dates〉,〈res num〉, annul@H 2(〈res num〉)) �→ 0 }

5 Related and Future Work

Among the most related approaches, Web-π [6] has no request-response pattern and its
treatment of faults is rather different from ours. Orc [5] has a pruning primitive similar
to our MSR. However, since Orc has no notion of fault, all the difficulties coming from
error management do not emerge. Finally, the service oriented calculi CaSPiS [1] and
COWS [7] include low-level mechanisms allowing the programmer to close ongoing
conversations. However, our approach is different, since we aim at providing primitives
which free the programmer from this burden.

As a future work, we plan to incorporate the primitives we propose in Jolie. Also we
would like to study their expressive power: the implementation of MSR in terms of the
existing primitives is not easy and we believe that a separation result could be proved.

References

1. Boreale, M., Bruni, R., De Nicola, R., Loreti, M.: Sessions and Pipelines for Structured Ser-
vice Programming. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp.
19–38. Springer, Heidelberg (2008)

2. Guidi, C., Lanese, I., Montesi, F., Zavattaro, G.: On the interplay between fault handling and
request-response service invocations. In: ACSD 2008, pp. 190–198. IEEE Press (2008)

3. Guidi, C., Lanese, I., Montesi, F., Zavattaro, G.: Dynamic error handling in service oriented
applications. Fundamentae Informaticae 95(1), 73–102 (2009)

4. Guidi, C., Lucchi, R., Gorrieri, R., Busi, N., Zavattaro, G.: SOCK: A Calculus for Service
Oriented Computing. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294,
pp. 327–338. Springer, Heidelberg (2006)

5. Kitchin, D., Quark, A., Cook, W., Misra, J.: The Orc Programming Language. In: Lee, D.,
Lopes, A., Poetzsch-Heffter, A. (eds.) FMOODS 2009. LNCS, vol. 5522, pp. 1–25. Springer,
Heidelberg (2009)

600 M. Dalla Preda et al.

6. Laneve, C., Zavattaro, G.: Foundations of web transactions. In: Sassone, V. (ed.) FOSSACS
2005. LNCS, vol. 3441, pp. 282–298. Springer, Heidelberg (2005)

7. Lapadula, A., Pugliese, R., Tiezzi, F.: A Calculus for Orchestration of Web Services. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer, Heidelberg (2007)

8. OASIS. Web Services Business Process Execution Language Version 2.0,
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

9. World Wide Web Consortium. Web Services Description Language (WSDL) 1.1,
http://www.w3.org/TR/wsdl

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www.w3.org/TR/wsdl

	Graceful Interruption of Request-Response Service Interactions
	Introduction
	SOCK
	Request-Response Interaction Pattern
	Multiple Request-Response Communication Pattern
	Related and Future Work

